NOTE

Quantitative Estimation of Aspirin Using Hydrotropic Solubilization Technique

R.K. MAHESHWARI*, R. AHER, G. WANARE, Y. JAGWANI, ANKITA KAPOOR, ANSHU JOSHI and ADITI KHANDELWAL
Department of Pharmacy, Shri G.S. Institute of Technology and Science, 23, Park Road, Indore-452 003, India
Fax: (91)(731)2546031; Tel: (91)(731)2542213
E-mail: rkrkmaheshwari@yahoo.co.in

In the present study, 2 M sodium salicylate solution has been employed to solubilize a poorly water-soluble drug, aspirin for its titrimetric analysis in tablets. Results of analysis by proposed methods were comparable with those of standard British Pharmacopoeial method. Results of analysis have been validated statistically. The proposed method is quicker than Pharmacopoeial method with its novelty, simplicity, accuracy and reproducibility.

Key Words: Hydrotropy, Aspirin, Sodium salicylate, Titrimetry.

Therapeutic effectiveness of a drug depends upon the bioavailability and ultimately upon the solubility of drug molecules. Solubility is one of the important parameter. A variety of solubilization techniques are available including pH adjustment, cosolvency, surfactant addition, hydrotropy and complexation. Concentrated aqueous solutions of several hydrotropic agents viz. sodium salicylate, sodium benzoate, sodium citrate, sodium acetate, urea and niacinamide have been employed to enhance the aqueous solubility of poorly water-soluble drugs1-8. Using hydrotropic solubilization technique, Maheshwari et al. have analyzed poorly water-soluble drugs from different pharmacological categories1-6. Several organic solvents have been employed for solubilization of poorly water-soluble drugs to conduct their titrimetric analysis. Drawbacks of which include their higher costs, toxicities and pollution.

There was more than 8 times enhancement in the aqueous solubility of aspirin (a poorly water-soluble drug) in 2 M sodium salicylate solution as compared to its aqueous solubility. Therefore, it was thought worthwhile to employ 2 M sodium salicylate solution to solubilize aspirin for its titrimetric analysis. Back titration method of Pharmacopoeia9 is time consuming while proposed method is rapid and involves direct titration.

All chemicals and solvents used were of analytical grade. Aspirin bulk sample was obtained as gift sample from Shree Pharmaceuticals, Indore. Tablets of aspirin were procured from local market.
Preliminary solubility study of aspirin: Solubility of aspirin bulk sample was determined in distilled water and 2 M sodium salicylate solution at room temperature. There was more than 8 fold enhancement in solubility in 2 M sodium salicylate solution as compared to water solubility.

Analysis of commercial tablets of aspirin by proposed method: Twenty tablets of aspirin were weighed and finely powdered. Tablet powder equivalent to about 500 mg of aspirin (as per label claim) was taken in a conical flask. Fifty mL of 2 M sodium salicylate solution was added and the flask was shaken for ca. 5 min to solubilize aspirin from tablet powder and titrated with 0.5 M sodium hydroxide using phenolphthalein solution as indicator. Necessary correction was made by conducting blank determination and amount of aspirin was calculated (Table-1). (Each mL of 0.5 M sodium hydroxide is equivalent to 90.08 mg of aspirin).

Analysis of commercial tablets of aspirin by British Pharmacopoeial method: Tablet powder equivalent to 0.5 g aspirin was boiled gently for 10 min with 30 mL of 0.5 M sodium hydroxide. Excess of alkali was titrated with 0.5 M HCl using phenol red solution as indicator. Operation was repeated without substance being examined. The difference between the titration represented the amount of alkali required. Aspirin content was thus determined (Table-1). (Each mL of 0.5 M NaOH is equivalent to 45.04 mg of aspirin).

Recovery studies on commercial aspirin tablets by proposed method: Recovery studies were performed by adding bulk aspirin sample in preanalyzed tablet powder and determining the drug content by proposed method. The results are presented in Table-2.

<table>
<thead>
<tr>
<th>Tablet formulation</th>
<th>Amount of Aspirin in pre-analyzed tablet powder taken (mg)</th>
<th>Pure aspirin added (spiked) (mg)</th>
<th>Per cent recovery estimated* (mean ± SD)</th>
<th>Per cent coefficient of variation</th>
<th>Standard error</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>500</td>
<td>50</td>
<td>99.38±1.227</td>
<td>1.235</td>
<td>0.708</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>100</td>
<td>102.49±0.831</td>
<td>0.811</td>
<td>0.480</td>
</tr>
<tr>
<td>II</td>
<td>500</td>
<td>50</td>
<td>100.66±1.870</td>
<td>1.858</td>
<td>1.080</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>100</td>
<td>99.08±2.225</td>
<td>2.276</td>
<td>1.302</td>
</tr>
</tbody>
</table>

*Average of three determinations.
Solubility of aspirin was determined in 2 M sodium salicylate solution and distilled water at room temperature. Solubility studies indicated that there was more than 8 fold enhancement in solubility in 2 M sodium salicylate solution as compared to water solubility. This hydrotropic solubilization phenomenon was utilized to perform titrimetric analysis (direct titration).

Table-1 shows that mean per cent label claims for formulation-I were 98.44 and 99.56 % by the proposed method and British Pharmacopoeial methods, respectively. Similarly, mean per cent label claims for formulation-II were 99.31 and 98.71 % by the proposed method and British Pharmacopoeial methods, respectively. The mean percent values are close to 100 and the results of analysis by the proposed method compare very well with the results obtained by a standard method (British Pharmacopoeia method) indicating the accuracy of the proposed method. Accuracy, reproducibility and precision of the proposed method are confirmed by low values of standard deviation, % coefficient of variation and standard error (Table-1). Validation of the proposed method is further confirmed by mean percent recovery values (99.08 to 102.49 %) which are close to 100 with significantly low values of standard deviation, per cent coefficient of variation and standard error (Table-2).

Conclusion

Thus, it is concluded that the proposed method is new, simple, rapid, accurate and precise. In future, attempts can be made to solubilize other water insoluble drugs in concentrated solutions of hydrotropic agents to carry out titrations precluding the use of costlier, unsafe, pollution causing organic solvents.

ACKNOWLEDGEMENT

The authors are thankful to Shree Pharmaceuticals, Indore, for gift sample of aspirin bulk sample.

REFERENCES