NOTE

Chemical Constituents of Salvia przewalskii Maxim.

Yang Yang1,2, Zhu Bing2, Lianna Sun1, Zhijun Wu1,* and Wansheng Chen1,**

1Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
2The 97th Hospital of PLA, Xuzhou, 221004, P.R. China
3School of Pharmacy, Second Military Medical University, Shanghai 200433, P.R. China

*Corresponding authors: Fax: +86 21 81871314; Tel: +86 21 81871347; E-mail: wzhijun999@sina.com, chenwanshengsmmu@yahoo.com.cn

In order to investigate the biologically active constituents of the Salvia przewalskii Maxim., a new diterpenoid, named isoganxinonic acid A (1), together with ɣ-linolenic acid (2), tanshinol B (3), cryptotanshinone (4), paeoniflorin (5), protocatechualdehyde (6), protocatechuic acid (7), caffeic acid (8), rosmarinic acid (9) and salvianolic acid B (10), were isolated from 50 % ethanol extract of the roots and rhizomes of *S. przewalskii* and their structures were identified by MS and NMR spectra. Compound 5 was reported from *Labiateae* for the first time.

Key Words: *Salvia przewalskii* Maxim., *Labiateae*, Diterpenoid, Isoganxinonic acid A.
which confirmed that the carbon skeleton of phenanthroquinone of p-quinone existed.

The HMBC correlations between H-15 (δ 8.73) and C-17 (δ 161.8), C-12 (δ 154.5), C-13 (δ 124.1), C-16 (δ 118.3) were showed that not only a furan ring was present, but also the carbonyl group of C-17 was located at β-position of the furan ring. The HMBC correlations between H-3 (δ 7.53) and C-18 (δ 19.6), H-18 (δ 2.68) and C-3 (δ 129.4), C-4 (δ 135.4), C-5 (δ 126.1) and the NOESY correlations between H-18 (δ 2.68) and H-6 (δ 8.50), H-3 (δ 7.53) showed that the linkage position of the methyl group of C-18 was at C-4. From these evidences, the structure of 1 was established as Fig. 1.

![Fig. 1. key correlations in H-H COSY, HMBC and NOESY of compound 1](image)

Compound 1, red powder. UV(CH$_3$OH) λ_{max} (log ε): 332 (2.56), 286 (4.26), 263 (4.13) nm; IR (KBr, ν_{max}, cm$^{-1}$): 3150, 3010, 2915, 2838, 1708, 1670, 1640, 1579, 1410, 1040, 918, 839, 696; ESI-MS m/z: 305.1 [M-H$^-$] (calcd. for C$_{18}$H$_9$O$_5$, 305.0450); 1H NMR (600 MHz, DMSO-d_6, δ, ppm): 9.42 (1H, d, J = 9.0, H-1), 7.65 (1H, dd, J = 7.2, 9.0, H-2), 7.53 (1H, d, J = 7.2, H-3), 8.50 (1H, d, J = 9.0, H-6), 8.17 (1H, d, J = 9.0, H-7), 8.73 (1H, s, H-15), 2.68 (3H, s, H-18); 13C NMR (150 MHz, DMSO-d_6, δ, ppm): 125.3 (C-1), 130.2 (C-2), 129.4 (C-3), 135.4 (C-4), 126.1 (C-5), 131.8 (C-6), 122.4 (C-7), 133.8 (C-8), 135.3 (C-9), 130.4 (C-10), 176.8 (C-11), 154.5 (C-12), 124.1 (C-13), 179.2 (C-14), 153.5 (C-15), 118.3 (C-16), 161.8 (C-17), 19.6 (C-18).

Conclusion

In conclusion, we isolated 10 compounds from 50% ethanol extract of *S. przewalskii*, isoganxinonic acid (1) was identified as a new compound and paeoniflorin (5) was obtained from *Labiatae* for the first time.

ACKNOWLEDGEMENTS

This work was supported by the Scientific Foundation of Shanghai of China (No 02DZ19107) and the National Specific Projects of New Drug Innovation (No 2009ZX0912-134).

REFERENCES