Composition, Antimicrobial and Antioxidant Activities of the Essential Oil of *Murraya exotica* from Hainan of China

**YA-SI HUANG**, **YONG WANG**, **XI-PING LUO** and **KE YUAN**

1The Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Lin'an, 311300, P.R. China
2School of Environmental & Resource Sciences, Zhejiang Agriculture and Forestry University, Lin'an, 311300, P.R. China
3*Corresponding author: Tel: +86 57163732747; E-mail: luoxiping0571@163.com

The objective of the works reported here was to make a thorough inquiry of composition, antimicrobial and antioxidant activities of the essential oil of *Murraya exotica* from Hainan Province, China. The essential oil of *Murraya exotica* were extracted by hydrodistillation and analyzed by GC and GC/MS. The relative content of each peak were detected by the normalization method of peak area. Thirty four components of *Murraya exotica* essential oil were identified which accounted for 97.76 % of total essential oil and the content of caryophyllene was up to 45.51 %, particularly. The results of the antioxidant activity test showed that the volatile oil had significant free radical scavenging capacity (IC50 = 0.1511). The antibacterial test results showed that the volatile oil of *Murraya exotica* had broad-spectrum antimicrobial activity on all bacteria other than *Pseudomonas aeruginosa*. Of which, the inhibition to *Bacillus subtilis* was about four times of the positive control and had a certain antifungal capabilities. Volatile oil of *Murraya exotica* had a certain antioxidant and antibacterial activity. The results can provide reference for further research on the chemical components of *Murraya exotica* volatile oil as well as for the exploration and utilization of it.

**Key Words:** *Murraya exotica*, GC-GC/MS, Antioxidant, Antimicrobial.

---

**INTRODUCTION**

The genus of *Murraya* L. belonging to the family Rutaceae of the Rutales is a kind of ornamental bush or small macrophanerophytes which contains 12 species and is widely distributed in southern Asia and northeastern Australia1. *Murraya exotica* (*M. exotica*) is the model of the family and the leaves of this plant called curry leaf are known as a kind of condiment which has been used popularly in Indian cooking2. It is reported that *M. exotica* has also played an important role in folk medicine in eastern Asia and Australia, where it is used to cure indigestion, vomit and relieve nausea3. According to Li et al., essential oil of *M. exotica* show definite toxicity against *S. zeamais*, *T. castaneum* adults and *Calletotrichum musae*. However, the study on its anti-pathogenic bacteria was absolute a gap. For this reason, this work reported here was urgently needed for searching natural germifuga and antioxidant.

**EXPERIMENTAL**

The fresh leaves of *M. exotica* were collected from Hainan province, China. The leaves were washed gently and dried in the sky. The dried samples were powdered with a blender and passed through an 80-mesh sieve and placed in bags and immediately stored in a desicator. Standard solution of the *n*-alkanes C8-C20 and C21-C40 mixture, DPPH and Trolox were all purchased from the Sigma Chemical Co, USA. The test bacterial strain used in this study were *Staphylococcus aureus*, *Bacillus subtilis*, *Pseudomonas aeruginosa* and *Escherichia coli* (freeze-dried powder) obtained from the Beijing Lianhuang Biotechnologies Institute. *Fusarium graminearum*, *Botrytis cinerea*, *Exerohilum turcicum* and *Lecannosticta acicola* were provided by the microbiology laboratory in Zhejiang Agriculture and Forestry University. The purity of the standards were all above 99.5 %. The main instruments used in this work were volatile oil extraction device and GC-MS analysis of the oils were carried out on a Trace 2000 instrument (Finnigan MS Co., USA), equipped with FID and DB-WAX elastic quartz capillary-tube chromatographic column (30 m × 0.25 mm, 0.25 mm). Infinite M 200 Enzyme Microplate Reader (Switzerland Tecan) was used in determination of antioxidation activity.

**Extraction of essential oil:** Dried leaves powder (*ca. 50 g*) were swollen with 500 mL distilled water in a standard extractor for 12 h, then were extracted by hydrodistillation in a Clevenger-type apparatus for 4 h procedure described in the
Chinese Pharmacopoeia (2005). Collect the steam liquid and extract it with ether, then recycle the ether and the oil was obtained after dehydration with anhydrous sodium sulfate. The essential oil samples were stored at 4 °C in dark before analysis. The yield of the essential oil was 1.32 % (v/w of dried sample).

**GC-MS analysis:** A FID and DB-WAX elastic quartz capillary-tube chromatographic column (30 m × 0.25 mm i.d., 0.25 µm); Agilent J & W scientific, Folsom, CA, USA) was used to separate the essential oil components. The initial temperature of the oven was held at 45 °C for 3 min, increased to 100 °C with the rate of 10 °C min⁻¹, then increased to 170 °C at 4 °C min⁻¹, of which the final temperature was increased to 240 °C at the rate of 10 °C min⁻¹ and held for 7 min. The ion source and injector temperatures were 200 and 250 °C, respectively. The spectrometers were operated in electron-impact (EI) mode; the ionization energy was 70 eV with a mass range of 40-300 m/z and a scan interval of 0.5 s. The detector potential was 350 V and the solvent delay time was 3 min. Helium was used as carrier gas at a constant flow rate of 0.8 mL min⁻¹ flow-rate.

**Calculation of retention indices:** This quasi-linear equation proposed by Van den Dool and Kratz was used to calculate retention indices in this work:

\[
IT = 100 \times n + 100 \times \frac{(tx - tn)}{(tn + 1 - tn)}
\]

where IT is the temperature-programmed retention index of the interesting compound and tn, tn + 1 and tx are the retention times of the two standard n-alkanes containing n and n + 1 carbons and the compound of interest, respectively.

**Determination of antioxidation activity:** The free radical scavenging activity of essential oils were determined based on their ability to react with the DPPH (2,2’-diphenyl-1-picrylhydrazyl) free radical with micro-plate quantification method. 14.00 mg of Trolox was dissolved in ethanol and diluted to 50 mL, then diluted to 0.056, 0.112, 0.168, 0.196, 0.224, 0.224 and 0.280 mg mL⁻¹, respectively. Essential oil samples were dissolved to 0.01, 0.02, 0.04, 0.06, 0.08 and 0.10 mg mL⁻¹ by ethanol. 15.56 mg DPPH was dissolved in ethanol and diluted to 50 mL (0.3112 mg mL⁻¹). 100 µL essential oil samples of all the concentrations in which 200 µL DPPH were added to micro-plate incubated at 25 °C for 0.5 h, then the ultraviolet absorption (As) was determined at 517 nm. The antioxidant activity (%) of radical-scavengers was calculated as followed:

\[
\text{Scavenging} \% = \frac{1 - (A_s - A_t)}{A_0} \times 100 \%
\]

where \(A_s\) is the absorbance of 50 µL sample mixed with 200 µL DPPH solution, while \(A_t\) is the absorbance of blank sample without DPPH and \(A_0\) is the absorbance of 50 µL absolute ethyl alcohol mixed with 200 µL DPPH solution. Parallel tests were carried out 3 times in every experiments at 517 nm and IC₅₀ values were reported as mean value of triplicates.

**Determination of antimicrobial activity:** By oxford cup method, inhibition zone were used to estimate the antibacterial ability of the essential oil. 50 µL of essential oil was dissolved diethyl ether and diluted to 2 mL. Four species of fungi were spread on the potato culture medium and four species of bacteria (10⁻⁷-10⁻⁸ cfu L⁻¹) were spread on the agar culture medium. Then the oxford cup was put on the middle of the plates which contained 200 µL oil samples (10 µL mL⁻¹) as well as positive and negative controls. After the plates were incubated at 37 °C for 24 h, the Inhibition zone was observed. The positive controls used gentamicin (80 U mL⁻¹) and the negative controls used diethyl ether for each strain assay and the diameters of the inhibition zones were measured in mm. All the assays were performed in triplicate.

**RESULTS AND DISCUSSION**

**GC-MS Analysis:** GC-MS total ion current chromatogram of the essential oil from the *Murraya exotica* is given in Fig. 1. The relative content of each peak was detected by the normalization method of peak area. By searching in NIST2008 standard mass spectrometry library and calculating with the normalization method of peak area, 34 compounds were identified (Table-1).

![Fig. 1. GC-MS total ion current chromatogram of the essential oil from the *Murraya exotica*](image)

As listed in Table-1, 48 peaks are separated in the essential oil of *M. exotica*, of which 34 compounds are identified and most of that belonged to sesquiterpenoids, such as caryophyllene, cedrene (15.12 %) and 1-(1,5-dimethyl-4-hexenyl)-4-methyl-benzene (11.12 %) and the relative content of caryophyllene was up to 45.51 %.

**Antioxidant activity analysis:** DPPH method was used to determine the free radical scavenging capacity of volatile oil from *M. exotica*. Trolox in different concentrations were determined and the results were calculated by regression analysis. According to the regression equation, IC₅₀ were obtained and listed in Table-2.

Table-2 shows that there is favourable linear relationship between the free radical scavenging capacity of essential oil and its concentration and its IC₅₀ (0.1511) is less then Trolox (0.1879).

**Antibacterial activity analysis:** Oxford cup method was used to analyze the antibacterial activity of the essential oil of *M. exotica* with gentamycin as positive control and ether as negative control. According to the inhibition zone, the antibacterial abilities were evaluated and the results could be seen in Table-3.
As listed in Table-3, the essential oil of *M. exotica* displayed broad spectrum antibacterial activity to the bacteria apart from *Pseudomonas aeruginosa*. Particularly, *Bacillus subtilis* was highly controlled, as it was almost 4 times of the antibacterial activity of positive control, which corresponded to *Escherichia coli* and *Staphylococcus aureus*, respectively. Oppositely, the fungus were not inhibited greatly by the positive control.

Conclusion

Here, we had identified 34 essential chemical compounds in *M. exotica*, of which caryophyllene was the highest content.
and accounted for almost half of the essential oil. One of the most common content of plant essential oil is caryophyllene, a kind of bicyclic sesquiterpenes and had always been used as spice, however, its antioxidant activity had not been comprehensively illustrated yet. Donatelli and Buffon had demonstrated that β-caryophyllene had anaesthetic effects using procaine as control. But further researches aiming at its antimicrobial had never been performed. Moreover, in the current studies, we hadn’t found such a high content of caryophyllene in other aromatic plants as that in M. exotica. Hence, we proposed that caryophyllene should play a key role in the antioxidant activity and antimicrobial effect of M. exotica. In this study, we showed that M. exotica greatly inhibited Bacillus subtilis and its inhibitory capability was about 4 times higher than the positive control. Until now, natural antibacillus subtilis chemical medicine hasn’t been found while those harmful traditional pesticide residues, such as bordeaux mixture and carbendazim require continuous use, which might cause serious pesticide residue in woods and soil and result in the drug resistance of germs. Therefore, the antifungal activity of M. exotica volatile oil has wide application value. M. exotica is one of the most common shrubs in Hainan Province with abundant resource, has not been efficiently utilized yet. Researches on the antioxidant activity of volatile oil in Indian M. exotica, which is much more worthy than being exploited, have already drawn certain attentions. The results of this study have provided basis for further usage of Hainan M. exotica resources.

ACKNOWLEDGEMENTS
The authors are grateful to the Center of Analysis and Testing, Jiangnan University, for performing GC-MS and also to the Zhejiang Agriculture and Forestry University, for performing Universal Microplate Spectrophotometer.

REFERENCES