Biocatalysis can be defined as the use of whole cells or enzymes in organic synthesis [1-3]. This use of enzymes in synthesis of organic compounds has led to the development of Green Chemistry. Green chemistry or sustainable technology has a large potential and can be applied in various sectors of chemical industries such as pharmaceutical industry, agrochemical industry and many more [4-11]. Biocatalysis provides various advantages such as reduction in the use of toxic chemicals, saving of energy and minimum production of waste [12]. One of the major challenges faced by synthetic chemists nowadays is the fact that different enantiomers of the same compound are usually produced during synthesis and these may have different interactions in biological systems. Consequently, the production of single enantiomers with specific activity, instead of racemic mixtures becomes an important issue in chemical industries e.g. pharmaceutical and agrochemical industries. In addition, chemical synthesis demands expensive equipments due to their high temperature and pressure. Enzymes show activity towards a range of compounds and forms different kinds of structurally related products. Chiral compounds can also be formed because of high efficiency, regio and stereo-selectivity of enzymes [13-15]. Microorganisms are becoming a favoured source of industrial enzymes since the number of enzymes which can be recovered economically from plants and animals are limited. There are two types of microbial enzymes which are extracellular and intracellular enzymes. Extracellular enzymes secreted out from cell and intracellular enzymes remain within cell thus whole cell are used as catalyst. Both bacteria and fungi are great source of various types of enzymes. With the help of recombinant DNA technology large number of recombinant or mutant enzymes was isolated from microbes [16-19]. Microbial enzymes have various advantages over other plants and animals like microbes can grow in extreme environmental conditions and have short generation time. In general, enzymes act as a machinery of nature to synthesize new organic compounds, already discussed by various researchers [20-35]. This review shows some examples of biocatalysts (enzymes) used for the production of various organic compounds and heterocycles. In this review, reactions are categorized according to the class of enzymes used in production which are oxidoreductase, transferase, hydrolase, lyase, isomerase and ligase.
transferase and ligase. In addition, enzymatic engineering allows for the production of enzymes effective in a non-aqueous environment [36]. This kind of environment is used in biocatalysis due to its interesting properties such as increased solubility of the substrate or hydrolytic reaction reversibility.

Classification of enzymes (biocatalysts)

There is a great need of more frequent integration of enzymatic steps in organic synthesis routes for better ecofriendly development [37-40]. Thus, with the help of high through put methods, enzymatic metagenomic libraries and chip technologies, the fourth wave of biocatalysis is approaching day by day [34,41-43]. The summary of classification, types, reaction catalyzed and examples of enzymes are shown in Table-1. About 60% of biocatalysts used are hydrolases, 20% oxidoreductases and rest 20% is for other four classes of enzyme [36].

Oxidoreductases: Oxidoreductase catalyzes the transfer of electron from one molecule to other. Oxidoreductases catalyze reactions similar to the following, \(A' + B \rightarrow A + B' \) where \(A \) is the oxidant and \(B \) is the reductant. Oxidoreductase includes oxidases or dehydrogenases. Oxidases are used when molecular oxygen acts as hydrogen or electrons acceptor. Likewise dehydrogenase by transferring hydrogen oxidizes a substrate that is \(\text{NAD}^+ / \text{NADP}^+ \) or a flavin enzyme. Oxidoreductases enzymes are second most used forms of enzymes in synthesis of organic compounds. This class of enzyme includes various examples like hydroxylases, peroxidases, reductases and oxygenases. Oxidoreductase enzymes also plays very important role in both anaerobic and aerobic metabolism.

Alan et al. [44] stated the conversion of 2-oxobutanoic acid (1) with the use of L and D form of lactate dehydrogenase to stereospecific isomers of type \(\alpha \)-hydroxybutanoic acid (2) and (3) (Scheme-I). L-Lactate dehydrogenase in comparison with D-lactate dehydrogenase has narrower substrate specificity. Both isomers of lactate dehydrogenase use NADH as a catalyst for production of isomers of \(\alpha \)-hydroxybutanoic acid. Alan et al. [44] also stated that 2,4-diaminopentanoic acid (4) can be reduced to 2,4-amino-4-oxopentanoic acid (5) with the help of 2,4-diaminopentanoate dehydrogenase (Scheme-II). This enzyme acts on CH-NH\(_2\) group of donor and NAD, NADP act as electron acceptor. These enzymes act on various metabolic pathways like arginine and proline metabolism, lysine degradation *etc.*

DeSantis et al. [45] also observed that some reactions catalyzed by oxidoreductase which are epoxidation of alkenes through epoxidase isolated from *Pseudomonas oleovorans*, lactonization of cyclohexane by monoxygenase isolated from Baker’s yeast and hydroxylation of benzene by hydroxylase isolated from *Aspergillus niger* (Scheme-III).

Peterson et al. [46,47] found a commercially viable route of synthesizing cortisol that took over the 31-steps chemical synthesis of cortisol from a bile acid and this showed the way for the subsequent commercial success of the steroid hormones. The corticosteroid, 11-hydroxycortisol can be produced from the cheap precursor 11-deoxycortisol using 11\(\beta \)-monoxygenase. A fungus with genus *Rhizopus* was found which easily add in a single step 11\(\alpha \)-hydroxyl group directly on to steroid hormone progesterone (Scheme-IV).

![Scheme-I](image)

Scheme-I: (i) Action of L-lactate dehydrogenase (ii) Action of D-lactate dehydrogenase

Scheme-II: Reduction of 2,4-diaminopentanoic acid using 2,4-diaminopentanoate dehydrogenase

Scheme-III: Epoxidation by epoxidase, hydroxylation by dioxygenase and lactonization by monoxygenase

Scheme-IV: Hydroxylation of a bile acid to progesterone by \(11 \beta \)-monoxygenase
Epoxides are usually formed by epoxidation of alkenes or by halohydrins. For epoxidation three classes of enzymes were used which are (i) enzymes (heme dependent) using molecular H₂O₂ like chloroperoxidase and unspecific peroxidase, (ii) enzymes requiring molecular oxygen like xylene monooxygenase and (iii) enzymes using FAD like styrene monooxygenase or a Baeyer-villiger monooxygenase. Cytochrome P450 enzyme having heme iron centre causes epoxidation. Groves et al. [48] stated the mechanism of epoxidation as shown in Scheme-V, which was later investigated by Hrycay and Bandiera [49].

Wang et al. [50] reported the cyclopropanation of acrylamides with the use of different of P450BM3-Hstar, in which the heme iron’s ligand got changed to histidine from cysteine. P450BM3-Hstar helps in enantioselective transformation of lots of acrylamide to their corresponding cyclopropanes such as in synthesis of levomilnacipran, an antidepressant [51] (Scheme-VI). Dietrich et al. [52] reported the advantage of a recombinant P450BM3-G-4 variant in the semi-synthetic development of anti-malarial drug, e.g. artemisinin. E. coli expressing P450BM3-G-4 variant epoxidizes amorpha-4,11-diene (18) into artemisinic-11S,12-epoxide (19). This epoxide is further helps in the production of drug artemisinin (20) (Scheme-VII).

Peter et al. [53] reported that an aromatic peroxygenase, isolated from Agrocybe aegerita (AaeUPO) which oxidizes alkenes (linear, branched and cyclic) through hydroxylation or epoxidation using hydrogen peroxide. This peroxygenase works by the same mechanism as the P450 enzyme except that it uses hydrogen peroxide for epoxidation rather than NAD(P)H and molecular oxygen (Scheme-VIII).

Transferase: Transferases (EC: 2) catalyzes the transfer of groups such as sugar, phosphoryl, aldehyde or ketone and acyl from one molecule to another. Transferases are multifaceted catalysts for synthesis of different types of organic compounds such as transaminases used for the synthesis of amines and amino acids. Rottig and Steinbuchel [54] stated that chloramphenicol acetyltransferases (CAT) catalyzes the acylation of chloramphenicol (23) to form 3-acetylchloramphenicol (25) by transferring the acetyl group from acetyl-coenzyme A (acetyl-CoA) (24) to the hydroxyl group of chloramphenicol (Scheme-IX). CATs were responsible for bacterial resistance to the antibiotic chloramphenicol, which inhibits the activity of ribosomal peptidyl-transferase.

Horbal et al. [55] reported that transaminase catalyzes the transfer of an amino group. This process was used for the preparation and resolution of amino acids and their analogues.
The transaminases can be applied either in the kinetic resolution of racemic β-amino acids or in asymmetric synthesis of amino acids, starting from the corresponding prochiral β-keto-substrate (Scheme-X). Transaminase belong to the large and diverse group of pyridoxal phosphate (PLP)-dependent enzymes and are ubiquitous in living organisms playing an important role in amino acid metabolism.

Scheme-X: Transfer of an amino group using transaminase

\[
\begin{align*}
R_1, R_2, R_3 &= \text{aryl or alkyl group} \\
R_1, R_2 &= \text{aryl or alkyl group}
\end{align*}
\]

Some researchers \[56,57\] reported the preparation of nucleosides analogues (antiviral precursors) can be catalyzed by glycosyl transferase (deoxyribosyltransferase). This reaction involves the transfer of a sugar group from a compound (31) to another (32) to form a nucleoside (33) (Scheme-XI). Transaldolase enzyme extracted from \textit{E. coli} catalyzes the transfer of dihydroxyacetone moiety from one donor substrate (35) to other acceptor substrate (36) (Scheme-XII) \[55\].

Scheme-XI: Action of deoxyribosyl transferase

\[
\begin{align*}
\text{Deoxyribosyl transferase} & \quad \text{Nucleoside} \\
\text{Deoxyridine} & \quad \text{Nucleoside}
\end{align*}
\]

Scheme-XII: Transfer of dihydroxyacetone using transaldolase

Hydrolases: Hydrolases (EC: 3) catalyze the hydrolytic cleavage of glycosides, anhydrides, esters, amides, peptides, and other C-N moieties. These reactions are referred to as hydrolysis. Tyler \textit{et al.} \[13\] reported that proteases like papain, \(\alpha\)-chymotrypsin and subtilisin were useful biocatalysts for regioselective or stereoselective hydrolytic biotransformations. For example, dibenzylester of glutamic acid and aspartic acid (39) at position-1 give their derivatives (40) by \textit{Subtilis} in catalyzed hydrolysis (Scheme-XIII).

Scheme-XIII: Hydrolytic biotransformation

Nitrilases also play an important function in the preparation, resolution and the conversion of nitrile groups (41) to acid groups (42). Tyler \textit{et al.} \[13\] also demonstrated that \textit{Rhodococcus} sp. AJ270 containing a nitrilase was able to catalyze the stereoselective conversion of \(\alpha\)-substituted phenylacetanilides (43) under mild conditions into amides (45) and carboxylic acids (46) (Scheme-XIV).

Scheme-XIV: Conversion of nitrile to acid and amid using nitrilase

Leonte \textit{et al.} \[58\] described the biocatalytic synthesis of new Mannich bases containing various heterocyclic rings (thiazole, furane, thiophene, pyridine) by applying the lipase catalyzed trimolecular condensation of the corresponding heterocyclic aldehydes (50) with acetone (52) and primary aromatic amines (51) in mild and eco-friendly reaction conditions (Scheme-XV). Penicillin acylase isolated from \textit{E. coli} hydrolyzes the different forms of penicillin such as penicillin G (58) into 6-aminopenicillinic acid (6-APA) (59) \[59,60\] (Scheme-XV).
The enzyme catalyzes the hydrolysis of amide bond in side chain of penicillin to give amine. This 6-aminopenicilllic acid product was then converted into different types of new penicillin derivatives.

Scheme-XVI: Conversion of penicillin G to 6-aminopenicilllic acid using penicillin acylase

Amidase enzyme extracted from Aspergillus oryzae was used for the hydrolysis of acetyl group in N-acetylmethionine [61,62]. However, only one of the enantiomer of acetyl methionine was the substrate for amidase. Thus, L-methionine (63) was the product of the reaction and D-enantiomer of acetylated methionine (64) remains unreacted as like substrate (Scheme-XVII) [61].

Scheme-XVII: Hydrolysis of acetyl group using amidase

Shadpour et al. [62] reported that methyl ester of aspartic acid will hydrolyze under severe conditions. There are two reactive groups in aspartic acid and enzyme needs only of them to take part in condensation reaction. Thermolysin was able to work under extreme conditions such as high temperature, in presence of organic solvents, etc. Thermolysin forms the amide bond between two substrates to form product (68) (Scheme-XVIII). The enzyme esterase selectively hydrolyzes the substrate containing esters to their corresponding acids via specific stereoselectivity. Esterase was capable of differentiating between different isomers of substrate esters. This acid was then further elaborated under mild conditions for the innovative synthesis of final calcium-antagonist drug diltiazem (71) (Scheme-XIX) [63].

Scheme-XVIII: Formation of amide bond using thermolysin

Isopropyl myristate (74) was obtained by condensation of myristic acid (72) with isopropyl alcohol (IPA) (73) (Scheme-XX). Isopropyl myristate was an emollient used in skin care products to give a smooth feel to the skin. Lipase used in the condensation, was obtained from a yeast Candida. This reaction operates at 60 °C to remove water produced during reaction [64].

Lyases: Lyases (EC: 4) are the enzymes which are responsible to catalyze addition and elimination reactions means it
catalyzes reactions involving the breaking of a bond between a carbon atom and another atoms such as oxygen, sulfur or another carbon atom. This class of enzyme has great applications in cellular processes such as citric acid cycle and in organic synthesis, such as in the production of cyanohydrins. DeSantis [45] reported the biotransformation of phenylethanone (75) to 2-hydroxyl-2-phenyl-2-nitryl (77) through the catalytic activity of s-oxynitrilase from Sorghum bicolor (Scheme-XXI). Brovetto et al. [65] also reported on the use of benzaldehyde lyase (BAL) to catalyze the transformation of rac-benzion (78) to R-2-hydroxyl-2-phenylpropanone (79) as well as its resolution to S-benzion (80) (Scheme-XXII). Furthermore, Brovetto et al. [65] also reported the use of ammonia lyases as efficient biocatalysts for biotransformation by describing the action of phenylalanine lyase and phenylalanine aminomutase in the synthesis of amino acids (82,84,85) (Scheme-XXIII).

Pelt [66] reported that a lyase known as nitrile hydratase (NHase) was used in the production process of nicotinamide (niacinamide, vitamin B3). The process involves four highly selective, continuous catalytic reaction steps namely (i) cyclization, (ii) dehydrogenation (iii) ammoxidation and (iv) enzymatic hydration using NHase. The starting material was 2-methyl pentanediamine (86), which was a by-product obtained from nylon-66 production. In the last step, hydration of 3-cyanopyridine (88) to nicotinamide (89) was carried out by using R. rhodochrous J1 whole cells (containing NHase) immobilized in polyacrylamide gel particles (Scheme-XXIV).

Isomerasers: Isomerasers are a class of enzyme which catalyzes the structural rearrangement within one molecule. It facilitates intramolecular rearrangements in which bonds are broken and formed. Researches on glucose isomerasers are reported and covers the mathematical simulation as well as the establishment of whole-cell processes [65,66]. Epimerase and racemase are the two most commonly used form of enzymes from class isomerase.

Epimerase (EC 5.1.3.8) isolated from Escherichia coli facilitates the epimerization of glucosamine. For the synthesis of N-acetylenuraminic acid, N-acetyl-D-mannosamine serves as an in situ generated substrate. Since N-acetyl-D-mannosamine (91) was quite expensive, therefore, it was synthesized by epimerization at C$_2$ of N-acetyl-D-glucosamine (90) (Scheme-XXV). By application of N-acylglucosamine (GlcNAc) 2-epimerase, it was possible to start with inexpensive N-acetyl-D-glucosamine instead of N-acetyl-D-mannosamine [67-70].

Production of 100% desired enantiomer in single pot from a given substrate was possible by dynamic kinetic resolution.
Aminolactamhydrolase (EC 3.5.2.11) and racemase (EC 5.1.1.15) was used for dynamic resolution of α-amino-ε-caprolactam (92) (Scheme-XXVI). The racemase enzyme for racemization was isolated from Achromobacter obae [71,72].

Palatinose, a reducing disaccharide, occurs naturally in low amount in sugarcane extract and honey. Palatinose and its hydrogenated products are used as sweetener with same taste as sucrose, with only half of calorific value and 42% of sweetness as of sucrose. Thus because of low insulin simulation and lower acid and glucan production, it was used as substitute of sucrose in various food industries. A-Glucosyltransferase (EC 5.4. 99. 11) continuously produces palatinose (96) with small amount of trehalulose from sucrose (95) (Scheme-XXVII) [38].

TABLE-2: SUMMARY OF THE ENZYMES USED AS A CATALYST IN VARIOUS REACTIONS

<table>
<thead>
<tr>
<th>Microbes used</th>
<th>Enzyme</th>
<th>Substrate</th>
<th>Product</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacillus subtilis</td>
<td>Subtilisin</td>
<td>Glutamic acid</td>
<td>Derivatives of glutamic acid</td>
<td>[13]</td>
</tr>
<tr>
<td>Rhodococcus species AJ270</td>
<td>Nitrilase</td>
<td>Nitrile</td>
<td>Carboxylic acid</td>
<td>[13]</td>
</tr>
<tr>
<td>Aspergillus niger</td>
<td>Lactase dehydrogenase</td>
<td>Oxobutanoic acid</td>
<td>Isomers of α-hydroxybutanionic</td>
<td>[44]</td>
</tr>
<tr>
<td>Aspergillus niger</td>
<td>Hydrolase</td>
<td>Benzene</td>
<td>Catechol</td>
<td>[45]</td>
</tr>
<tr>
<td>Aspergillus niger</td>
<td>Epoxide hydrolase</td>
<td>Benzene</td>
<td>Glycol</td>
<td>[45]</td>
</tr>
<tr>
<td>Pseudomonas oleovorans</td>
<td>Oxidoreductase</td>
<td>Alkene</td>
<td>Epoxide</td>
<td>[45]</td>
</tr>
<tr>
<td>Clostridium sticklandii</td>
<td>Dehydrogenase</td>
<td>2,4-Diamino pentanoic acid</td>
<td>2,4-Amino-4-oxo-pentanoic acid</td>
<td>[45]</td>
</tr>
<tr>
<td>E. coli K2</td>
<td>Oxidoreductase</td>
<td>5,6-Dihydro Uracil</td>
<td>Uracil</td>
<td>[45]</td>
</tr>
<tr>
<td>Baker’s Yeast</td>
<td>Monoxygenase</td>
<td>Cyclohexane</td>
<td>Lactone</td>
<td>[45]</td>
</tr>
<tr>
<td>Rhizopus nigricans</td>
<td>11-α-Hydroxylases</td>
<td>Progesterone</td>
<td>11-α-Hydroxyprogesterone</td>
<td>[46]</td>
</tr>
<tr>
<td>Agrocye aegerita</td>
<td>Cytochrome P450</td>
<td>Alkene</td>
<td>Epoxide</td>
<td>[49]</td>
</tr>
<tr>
<td>Bacillus megaterium</td>
<td>P450 BM-3- Hstar</td>
<td>Cyclopropene</td>
<td>Acrylamides</td>
<td>[50]</td>
</tr>
<tr>
<td>E. coli</td>
<td>P450 BM-3 G-4</td>
<td>Amorphia-4,1-diene</td>
<td>Artemisinic-11S,12-epoxide</td>
<td>[52]</td>
</tr>
<tr>
<td>Agrocye aegerita</td>
<td>Fungal peroxygenase (AaeUPO)</td>
<td>Alkene</td>
<td>Epoxide</td>
<td>[53]</td>
</tr>
<tr>
<td>E. coli</td>
<td>Chloramphenicol</td>
<td>Chloramphenicol</td>
<td>3-Acetyl chloramphenicol</td>
<td>[54]</td>
</tr>
<tr>
<td>E. coli B</td>
<td>Transaminase</td>
<td>Prochiral β-keto amino acids</td>
<td>Racemic β-amino acid</td>
<td>[55]</td>
</tr>
<tr>
<td>Lactobacillus helviticus</td>
<td>Glycosyl transferase</td>
<td>2-Deoxy-D-ribosyl-base, + base,</td>
<td>2-Deoxy-D-ribosyl-base, + base,</td>
<td>[56]</td>
</tr>
<tr>
<td>Candida rugosa</td>
<td>Lipase</td>
<td>Heterocyclic aldehyde and acetone</td>
<td>Mannich base</td>
<td>[58]</td>
</tr>
<tr>
<td>E. coli</td>
<td>Penicillin acylase</td>
<td>Penicillin</td>
<td>6-Aminopenicillanic acid</td>
<td>[59,60]</td>
</tr>
<tr>
<td>Aspergillus oryae</td>
<td>Amidase</td>
<td>N-Acetyl L-Methionine</td>
<td>L-Methionine</td>
<td>[61]</td>
</tr>
<tr>
<td>Bacillus stearothermophilus</td>
<td>Thermolysin</td>
<td>Aspartic acid + methyl ester</td>
<td>Aspartame</td>
<td>[62]</td>
</tr>
<tr>
<td>Bacillus cereus</td>
<td>Lipase</td>
<td>Myristic acid and isopropyl alcohol</td>
<td>Isopropylmyristate</td>
<td>[64]</td>
</tr>
<tr>
<td>Pseudomonas fluorescence</td>
<td>Benzaldehyde lyase</td>
<td>Benzon</td>
<td>R-2-Hydroxyphenylpropanone</td>
<td>[65]</td>
</tr>
<tr>
<td>Pseudomonas fluorescence</td>
<td>Phenylalanine lyase</td>
<td>Cinnamic acid</td>
<td>Amino acid</td>
<td>[65]</td>
</tr>
<tr>
<td>R. rhodochrous</td>
<td>Nitrile hydratase</td>
<td>2-Methyl pentanediamine</td>
<td>Nicotinamide</td>
<td>[66]</td>
</tr>
<tr>
<td>Pseudomonas chlororaphis</td>
<td>Nitrile hydrates</td>
<td>Isocyanide</td>
<td>5-Cyanovaleamid (5-CVAM)</td>
<td>[66]</td>
</tr>
<tr>
<td>E. coli</td>
<td>Epimerase</td>
<td>N-Acetyl-D-mannosamine</td>
<td>N-Acetylhyumeamic acid</td>
<td>[69,70]</td>
</tr>
<tr>
<td>Achromobacter obae</td>
<td>Aminolactum hydrolase</td>
<td>D,L-a-amino-e-caprolactam</td>
<td>D-Amino-e-caprolactam + L-lysine</td>
<td>[71,72]</td>
</tr>
<tr>
<td>Bacillus coagulans</td>
<td>Glucose isomerase</td>
<td>Glucose</td>
<td>Fructose</td>
<td>[73]</td>
</tr>
</tbody>
</table>
Conclusion

Biocatalysis has emerged as a significant resource for chemical synthesis and it is on the path of exponential growth. In several industries, during past several decades various types of products have been produced by many biocatalytic processes implementation. Among all classes, Class 6 (ligases), have limited applications in organic syntheses. This is because in situ regeneration of the cofactor ATP is a challenge. In contrast, enzymes from enzyme classes EC 1-5 are highly efficient catalysts for broad range of organic synthetic transformations as well as suitable for technical-scale applications Most of the products are produced through the use of natural enzymes, whole cells or microorganisms are summarized in Table-2. The cost and the time for development of new enzymes can be minimized drastically by advancement in protein engineering along with metabolic engineering. These engineered enzymes are used in various pharmaceutical and food industries due to their stereo-selectivity. The advancements in proteomics, genomics and bioinformatics will leads to the biocatalysis development which acts as the integral part of various industrial catalysts.

CONFLICT OF INTEREST

The authors declare that there is no conflict of interests regarding the publication of this article.

REFERENCES

7. M. Breuer, K. Ditrich, T. Habicher, B. Hauer, M. Keßeler, R. Stürmer

