NOTE

Chemical Constituents of Leaves and Fruit of *Antidesma ghaesembilla* Gaertn.

Rhanney L. Gonzales1,2, Chien-Chang Shen1 and Consolacion Y. Ragasa1,4,∗

1Chemistry Department, De La Salle University, 2401 Taft Avenue, Manila 1004, Philippines
2Chemistry Department, Central Luzon State University, Munoz, Nueva Ecija 3020, Philippines
3National Research Institute of Chinese Medicine, Ministry of Health and Welfare, 155-1, Li-NongSt., Sec. 2, Taipei 112, Taiwan
4Chemistry Department, De La Salle University Science & Technology Complex, Leandro V. Locsin Campus, Biñan City, Laguna 4024, Philippines

*Corresponding author: Tel/Fax: +63 2 5360230; E-mail: consolacion.ragasa@dlsu.edu.ph

Received: 6 April 2017; Accepted: 30 June 2017; Published online: 31 August 2017; AJC-18544

Chemical investigation of the dichloromethane extracts of *Antidesma ghaesembilla* Gaertn. has led to the isolation of β-friedelinol (1), lupeol (2), squalene (3), polypreno1 (4), β-sitosterol (5), long-chain hydrocarbons (6) and chlorophyll-a (7) from the leaves and β-sitosterol (5) and triacylglycerols (8) from the fruit. The structure of β-friedelinol (1) was elucidated by extensive 1D and 2D NMR spectroscopy, while those of compounds 2 to 8 were identified by comparison of their NMR data with literature data.

Keywords: *Antidesma ghaesembilla*, Phyllanthaceae, β-Friedelinol, Lupeol, Squalene, Polypreno1, β-Sitosterol, Chlorophyll-a.

Antidesma ghaesembilla Gaertn. (family: Phyllanthaceae) is a plant indigenous of Philippines. Locally known as binayuyo, the young shoots are used as a vegetable and as a spice [1]. The leaves are used as a poultice to treat headaches, scurf, abdominal swellings and fevers. The stems are emmenagogue and the fruit is purgative. The fully ripe fruit can be eaten raw, cooked or made into jams and jellies [2]. A previous study reported that the crude methanol extract of *A. ghaesembilla* leaves exhibited moderate to strong antioxidant potential and showed significant hypoglycemic potential [3]. Recently, the methanolic extract of *A. ghaesembilla* leaves was reported to exhibit antithrombotic, cytotoxic and antibacterial activities [4]. Chemical studies on the leaves of *A. ghaesembilla* reported the isolation of a megastigmene, vomifoliol [5] and the flavone glycosides, vitexin, orientin, isovitexin and homoorientin [6].

We report herein the isolation of β-friedelinol (1), lupeol (2), squalene (3), polypreno1 (4), β-sitosterol (5), long-chain hydrocarbons (6) and chlorophyll-a (7) from the leaves and β-sitosterol (5) and triacylglycerols (8) from the fruit of *A. ghaesembilla*. To the best of our knowledge this is the first report on the isolation of compounds 1-8 from *A. ghaesembilla*.

NMR spectra were recorded on a Varian VNMRS spectrometer in CDCl3 at 600 MHz for 1H NMR and 150 MHz for 13C NMR spectra. Column chromatography was performed with silica gel 60 (70-230 mesh). Thin layer chromatography was performed with plastic backed plates coated with silica gel F254 and the plates were visualized by spraying with vanillin/H2SO4 solution followed by warming.

Sample collection: Samples of the leaves and fruits of *Antidesma ghaesembilla* Gaertn. were collected from Lupao, Nueva Ecija, Philippines in June 2016. The samples were authenticated at the Botany Division, Philippine National Museum.

Isolation procedure: A glass column 12 inches in height and 0.5 inch internal diameter was used for the chromatography. The crude extracts were fractionated by silica gel chromatography using increasing proportions of acetone in CH2Cl2 at 10 % increment by volume as eluents. Five milliliter fractions were collected. All fractions were monitored by thin layer chromatography. Fractions with spots of the same Rf values were combined and rechromatographed in appropriate solvent systems until TLC pure isolates were obtained. Final purifications were conducted using Pasteur pipettes as columns. One milliliter fractions were collected.

Isolation of chemical constituents from leaves of *A. a. ghaesembilla*: The air-dried *A. ghaesembilla* leaves (323.4 g) were ground in a blender, soaked in CH2Cl2 for 3 days and then filtered. The solvent was evaporated under vacuum to afford a crude extract (2.4 g) which was chromatographed using increasing proportions of acetone in CH2Cl2 at 10 % increment...
by volume. The CH$_2$Cl$_2$ fraction was rechromatographed using petroleum ether. The less polar fractions were combined and rechromatographed using petroleum ether to afford long chain hydrocarbons (6) (8 mg) after washing with petroleum ether. The more polar fractions were combined and rechromatographed using petroleum ether to yield squalene (3) (10 mg). The 10 % acetone in CH$_2$Cl$_2$ fraction from the chromatography of crude extract was rechromatographed (2×) using 1 % EtOAc in petroleum ether. Final purification was conducted by rechromatography using 5 % EtOAc in petroleum ether to afford polypropenol (4) (9 mg). 30 % acetone in CH$_2$Cl$_2$ fraction from the chromatography of crude extract was rechromatographed (2×) using 5 % EtOAc in petroleum ether to yield β-friedelinol (1) (12 mg) after washing with petroleum ether. The 40 % acetone in CH$_2$Cl$_2$ fraction from the chromatography of the crude extract was rechromatographed by gradient elution using 5 % EtOAc in petroleum ether, followed by 7.5 % EtOAc in petroleum ether and finally, 10 % EtOAc in petroleum ether. The fractions eluted with 5 % EtOAc in petroleum ether were combined and rechromatographed using 5 % EtOAc in petroleum ether to provide lupeol (2) (7 mg) after washing with petroleum ether. The fractions eluted with 7.5 % EtOAc in petroleum ether were combined and rechromatographed using 10 % EtOAc in petroleum ether to afford β-sitosterol (5) (15 mg) after washing with petroleum ether. The fractions eluted with 10 % EtOAc in petroleum ether were combined and rechromatographed using 10 % EtOAc in petroleum ether to afford β-sitosterol (5) (15 mg) after washing with petroleum ether. The fractions eluted with 7.5 % EtOAc in petroleum ether were combined and rechromatographed using 10 % EtOAc in petroleum ether to afford triacylglycerols (8) (3 mg) after washing with petroleum ether, followed by Et$_2$O.

Isolation of the chemical constituents from fruit of A. ghaesembilla: The freeze-dried A. ghaesembilla fruit (38.2 g) was ground in a blender, soaked in CH$_2$Cl$_2$ for 3 days and then filtered. The solvent was evaporated under vacuum to afford a crude extract (1.60 g) which was chromatographed using increasing proportions of acetone in CH$_2$Cl$_2$ at 10 % increment by volume. The CH$_2$Cl$_2$ fraction was rechromatographed (2×) using 10 % EtOAc in petroleum ether to yield triacylglycerols (7) (81 mg) after washing with petroleum ether. The 30 % acetone in CH$_2$Cl$_2$ fraction was rechromatographed using 10 % EtOAc in petroleum ether. Fractions from this column were combined and rechromatographed using 12.5 % EtOAc in petroleum ether to afford β-sitosterol (5) (39 mg) after washing with petroleum ether.

Silica gel chromatography of dichloromethane extracts of A. ghaesembilla afforded compounds 1-8. The structure of β-friedelinol (1) was elucidated by extensive 1D and 2D NMR spectroscopy and confirmed by comparison of its NMR data with those reported in the literature for β-friedelinol [7]. The NMR spectra of lupeol (2) are in accordance with data reported in the literature for lupeol [8]; squalene (3) for squalene [9]; polypropenol (4) for polypropenol [10]; β-sitosterol (5) for β-sitosterol [11]; long-chain hydrocarbons (6) for long-chain hydrocarbons [12]; chlorophyll-a (7) for chlorophyll-a [13] and triacylglycerols (8) for triacylglycerols [14].

The presence of α-linolenic acid in the triacylglycerols (8) was deduced from the methyl triplet at δ 0.96 (t, J = 7.8 Hz), the double allylic methylenes at δ 2.78, allylic methylene protons at δ 2.00 and the olefinic protons at δ 5.34 (m) [15]. Oleic acid was also found in B as indicated by the resonances for the methyl triplet at δ 0.86 (t, J = 6.6 Hz), allylic methylene protons at δ 2.00 and the olefinic protons at δ 5.34 (m) [15].

ACKNOWLEDGEMENTS

One of the authors, RLG acknowledges a scholarship and research grant from the Department of Science and Technology of the Philippines.

REFERENCES

1. Antidesma ghaesembilla (PROSEA Fruits)-Plant Use. Downloaded from uses.plantnet-project.org/en/Antidesma_ghaesembilla_ (PROSEA_Fruits).
2. Antidesma ghaesembilla-Useful Tropical Plants; Downloaded from tropical.theferns.info/viewtropical.php?id=Antidesma+ghaesembilla.