INTRODUCTION

The macronutrient groups are dietary fats, lipids that include fatty acids, triglycerides, cholesterol, essential fatty acids, linoleic and α-linoleic acid. Fats are a key factor for the maintenance caloric balance and to the body weight. Specific fatty acids are also serves as precursor for numerous biological functions. Fat soluble vitamins (i.e., vitamin A, D, E, K) and carotenoids are engaged in pathways that influence inflammation, coagulation and gene expression which are transported by fats [1]. 1,3,4-Oxadiazole are an important class of heterocyclic compounds with a wide range of pharmaceutical and biological activity [2-4]. Their synthesis and transformations have been of interest for a long time. This interesting group of compounds possesses diverse biological activity such as antimicrobial [5,6], anti-inflammatory [7], antitubercular [8], anticonvulsant [9], anti-cancer [10], anti-HIV [11], hypoglycemic [12] and genotoxic [13,14] activities.

In view of above mentioned pharmacological importance of fatty acids and 1,3,4-oxadiazole our ongoing efforts to synthesize a novel derivatives of 5-N-alkyl-1,3,4-oxadiazole-2-thiol (3F₁-F₄) and evaluated them for their potential as antimicrobial agents.

EXPERIMENTAL

Melting point taken in open capillary tubes using Arson digital melting point apparatus and were uncorrected. IR spectra were recorded on BRUKER Alpha FTIR spectrometer, ¹H NMR spectra were recorded on BRUKER (400 MHz) in DMSO-d₆ using TMS as an internal standard. Mass spectra were recorded in apex mass spectrophotometer. The purity of the compounds for checked in silica gel-G precoated plates by using n-hexane and ethyl acetate (1:1) as the eluent and observed in UV-chamber.

1,3,4-Oxadiazole, Fatty acids, Acid hydrazides, Anti-microbial activity.

THE NOVEL 5-N-ALKYL-1,3,4-OXADIAZOLE-2-THIOL DERIVATIVES HAVE BEEN SYNTHESIZED BY ESTERIFICATION OF FATTY ACID FOLLOWED BY REACTION THE ESTER WITH HYDRAZINE HYDRATE. THE ACID HYDRAZIDE WAS CONVERTED TO 1,3,4-OXADIAZOLE BY RING CLOSURE MECHANISM. THE SYNTHESIZED COMPOUNDS HAVE BEEN CHARACTERIZED BY PHYSICAL (MELTING POINT AND TLC) AND SPECTRAL (IR, ¹H NMR AND MASS) DATA. ALL THE COMPOUNDS WERE SCREENED FOR THEIR ANTIMICROBIAL ACTIVITY. THE COMPOUNDS 3F₁ & 3F₂ SHOWED GOOD INHIBITION ACTIVITY AGAINST ALL FOUR TYPES OF BACTERIA; WHILE COMPOUND 3F₃ & 3F₄ SHOWN MODERATE ACTIVITY.

KEYWORDS: 1,3,4-Oxadiazole, Fatty acids, Acid hydrazides, Anti-microbial activity.
Yield: 30%; m.p.: 174-179 °C; IR (KBr): ν max 2370 cm⁻¹ (νCH₂ stretching long alkyl chain), 1477 (C-O-C stretching), 1595 (C=C stretching), 1716 (C=O stretching), 2384 (C-SH stretching); ᵃ¹H NMR δ: 0.87-0.88 ppm (t, 3H, terminal CH₃); 1.20-1.41 ppm (m, 20H, -CH₂-); 1.45-1.48 ppm (d, 2H, -CH₂-); 1.57-1.64 ppm (m, 2H, -CH₂-), 2.66-2.69 ppm (t, 2H, -CH₂-), 14.25 ppm (s, 1H, SH); MS m/z: 340 (M⁺2).

5-Pentadecyl-1,3,4-oxadiazole-2-thiol (3F2): Yield (%): 45%; m.p.: 174.17 °C; IR (KBr): ν max 1064 cm⁻¹ (ν C-O stretching), 1063 cm⁻¹ (C-SH stretching); ᵃ¹H NMR δ: 0.8-0.85 ppm (t, 3H, terminal CH₃), 1.22-1.25 ppm (m, 25H, -CH₂-), 1.57-1.64 ppm (m, 2H, -CH₂-), 2.66-2.69 ppm (t, 2H, -CH₂-), 14.25 ppm (s, 1H, SH); MS m/z: 312 (M⁺).

5-Heptadecyl-1,3,4-oxadiazole-2-thiol (3F3): Yield (%): 52%; m.p.: 80-85 °C; IR (KBr): ν max 340 cm⁻¹ (M₁ + 2), 1716 (C=N stretching). The infrared spectra of the substituted 5-N-alkyl-1,3,4-oxadiazole-2-thiol (3F₁-3F₄) through a three step reaction and acid ester of fatty acid (I) has been synthesized from fatty acid and methanol in the presence of conc. H₂SO₄ by esterification. In step 2, the formed ester of fatty acid was hydrazinolized to give acid hydrazides (2), which later cyclize to form a title compounds i.e. 5-N-alkyl-1,3,4-oxadiazole-2-thiol (3F₁-3F₄) by reacting with CS₂ and KOH in ethanol. This procedure afforded various 1,3,4-oxadiazoles in moderate yields. The infrared spectra of the substituted 5-N-alkyl-1,3,4-oxadiazole-2-thiol (3F₁-3F₄) showed characteristic absorption bands, one of which appearing at 2936 cm⁻¹ was strong alkyl chain C-H which are all final compounds (3F₁-3F₄) shown 1200-1100 cm⁻¹ C=O-C, 1600-1500 cm⁻¹ C=O and 2354 cm⁻¹ SH Group. Similarly, ᵃ¹H NMR spectra of synthesized compounds (3F₁-3F₄) showed multiplet signals at δ 1.12-1.26 ppm due to methylene protons. The terminal CH₂ protons appeared as triplet at δ 0.82-0.85 ppm. The SH proton as a singlet at 14.25 ppm. A triplet at 5.30-5.35 ppm integrating for 2 olefinic protons (CH=CH) was attributed to the C₁₀-C₁₀ proton of 3F₁, doublet at 1.94-2.01 ppm for four allylic protons was attributed to C₁₆-C₁₆ protons of 3F₁.

RESULTS AND DISCUSSION

As depicted in Scheme-I, in addition to 1,3,4-oxadiazoles we have synthesized 5-N-alkyl-1,3,4-oxadiazole-2-thiol (3F₁-3F₄) by reacting with CS₂ and KOH in ethanol. This procedure afforded various 1,3,4-oxadiazoles in moderate yields. The infrared spectra of the substituted 5-N-alkyl-1,3,4-oxadiazole-2-thiol (3F₁-3F₄) showed characteristic absorption bands, one of which appearing at 2936 cm⁻¹ was strong alkyl chain C-H which are all final compounds (3F₁-3F₄) shown 1200-1100 cm⁻¹ C=O-C, 1600-1500 cm⁻¹ C=O and 2354 cm⁻¹ SH Group. Similarly, ᵃ¹H NMR spectra of synthesized compounds (3F₁-3F₄) showed multiplet signals at δ 1.12-1.26 ppm due to methylene protons. The terminal CH₂ protons appeared as triplet at δ 0.82-0.85 ppm. The SH proton as a singlet at 14.25 ppm. A triplet at δ 5.30-5.35 ppm integrating for 2 olefinic proton (CH=CH) was attributed to the C₁₀-C₁₀ proton of 3F₁, doublet at 1.94-2.01 ppm for four allylic protons was attributed to C₁₆-C₁₆ protons of 3F₁.

TABLE-1

<table>
<thead>
<tr>
<th>Compound code</th>
<th>Conc. (µg/mL)</th>
<th>Gram-positive organisms</th>
<th>Gram-negative organisms</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>B. subtilis</td>
<td>S. aureus</td>
</tr>
<tr>
<td>3F₁</td>
<td>50</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>100</td>
<td>25</td>
<td>15</td>
<td>27</td>
</tr>
<tr>
<td>3F₂</td>
<td>50</td>
<td>10</td>
<td>9</td>
</tr>
<tr>
<td>100</td>
<td>17</td>
<td>14</td>
<td>12</td>
</tr>
<tr>
<td>3F₃</td>
<td>50</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>100</td>
<td>9</td>
<td>N</td>
<td>15</td>
</tr>
<tr>
<td>3F₄</td>
<td>50</td>
<td>22</td>
<td>N</td>
</tr>
<tr>
<td>100</td>
<td>27</td>
<td>N</td>
<td>20</td>
</tr>
<tr>
<td>Streptomycin</td>
<td>50</td>
<td>22</td>
<td>25</td>
</tr>
<tr>
<td>Control</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

N = No inhibition

Scheme-I: Conventional synthetic route for 5-N-alkyl-1,3,4-oxadiazole-2-thiol
The results of the antimicrobial study of the newly synthesized compounds was reported as zone of inhibition against *E. coli*, *P. aeruginosa* (Gram-positive), *S. aureus*, *B. subtilis* (Gram-negative) (Table-1). All the synthesized compounds have shown significant antimicrobial activity. The compound 3F₁ and 3F₂ showed maximum activity at both 50 and 100 µg/mL concentrations whereas compounds 3F₃ and 3F₄ showed moderate activity. The results revealed that fatty acid moiety is a satisfactory backbone for significant antimicrobial activity and the presence of unsaturated double bonds in the structure of fatty acid is also responsible for the good activity. Thus by hybridization of 1,3,4-oxadiazole ring enhance the activity.

Conclusion

In this communication, our aim has been verified by the synthesis of 5-N-alkyl-1,3,4-oxadiazole-2-thiol (3F₁-3F₄) derivatives in which 1,3,4-oxadiazole ring incorporated with fatty acid hydrazide moiety in a single frame work. Obtained results revealed that most of tested compounds showed promising activity as antimicrobial agents. After all the above findings it can be concluded that these molecule become lead molecule for further synthetic and biological evaluation.

ACKNOWLEDGEMENTS

The authors are thankful to IISc, Bangalore, SAIF IIT, Madras for the spectral analysis. The authors are also thankful to the CES College of Pharmacy, Kurnool, Andhra Pradesh, India for their help and support.

REFERENCES

 https://doi.org/10.1016/j.ejmech.2006.10.003.
 https://doi.org/10.1016/j.bmcl.2007.05.052.
 https://doi.org/10.1007/s00044-010-9455-6.
 https://doi.org/10.1110/ps.04126105.