Kinetics and Mechanism of Reaction of cis-[Cr(C₆H₄OH)₂(H₂O)]⁺ with L-Dopa in Aqueous Medium: A Comparative Antiparkinsonian Studies

SUDHANSHU SEKHAR ROUT¹*, DURGA MADHAB KAR¹, SOVAN PATTANAİK¹, SUDAM CHANDRA SI¹ and PRAKASH MOHANTY²

¹School of Pharmaceutical Sciences, Siksha ‘O’ Anusandhan University, Bhubaneswar-751 030, India
²Department of Chemistry, Ravenshaw University, Cuttack-753 003, India

*Corresponding author: E-mail: sudhanshurout@soauniversity.ac.in

INTRODUCTION

Parkinson disease is considered as the second most common neurodegenerative disorder [1]. The role of dopamine and its analogs in brain is significant and unquestionable. Dopamine is an important neurotransmitter and its deficiency is considered as a principal factor responsible for behavioural changes in neuro-disorder like Parkinson’s disease. Levodopa [(+)-3-(3,4-dihydroxy)phenylalanine] is a precursor of both dopamine and norepinephrine in their biosynthetic pathways. These neurotransmitters and their derivatives regulate a variety of physiological functions in the human body. It has two bonding sites, a catecholic and an alanine site [2].

According to several epidemiological studies some recent evidence indicates that there is a potential link between elevated blood sugar and neurodegeneration. Diabetic patients suffer from a variety of neurological disorders including dementia and peripheral neuropathy. In addition, patients with diabetes mellitus have a 36 % increased risk of developing Parkinson’s disease. In light of recent findings, a hypothesis has emerged that suggests that mitochondrial dysfunction, endoplasmic reticulum stress, inflammation and alteration in metabolism may lead to insulin resistance and finally to diabetes and/or neurodegeneration. Especially in elderly population the increase in type 2 diabetes is expected to lead to a concomitant increase in neurodegeneration. Although the exact mechanisms that explain the coexistence of diabetes and Parkinson’s disease remain unknown, several studies have revealed potential mechanisms underlying this association [3]. Previous research has suggested that chromium in its trivalent form (Cr³⁺) is involved in the regulation of carbohydrate metabolism via an enhancement of insulin action [4]. Recent finding show that drugs to treat diabetic patients may elicit therapeutic effect in patients with Parkinson’s disease [5]. It has been reported that metal chelators have an ability to reduce the symptoms of Parkinson [6]. Levodopa is the most commonly used antiparkinsonian drug. It may act as a chelator for chromium and is present in the different medications for clinical management of Parkinson disease. Hence, a cis-[Cr(C₆H₄OH)₂(H₂O)]⁺ complex of levodopa might act as a potentially antiparkinsonian agent. In the present study chelation ability of levodopa towards chromium ion has been explored. The studies on antiparkinsonian activity due to Cr(H₂O)₆⁺⁺ - L-Dopa complex was the first study of its kind reported from our laboratory [7].

The substitution reactions of cis-[Cr(C₆H₄OH)₂(H₂O)]⁺ [8-10] in aqueous medium have attracted continued attention because of the significant biological importance of chromium(III). The kinetics and mechanism of the substitution reactions of [Cr(H₂O)₆]³⁺ with various amino acids have been reported [11-24]. Recently the reaction between Cr(H₂O)₆³⁺ with 1,3-propanediamine-N,N-diacetate-N,N’-di-3-propionate has been reported [25]. These reactions generally take place at the metal center via a transition state showing a greater degree of bond formation with the incoming ligand than that of bond breaking.
with the leaving ligand [26]. The current work describes the reaction of \(\text{cis-}[\text{Cr}(\text{C}_6\text{H}_4\text{O}_2\text{O})(\text{OH}_2)\text{]} \) with L-Dopa [(\-3)-(3,4-dihydroxy)phenylalanine]. The aim of the study is to explore whether the reaction product show any antiparkinsonian activity or not. The negative \(\Delta S^\circ \) (68.6 JKmol\(^{-1}\)) and higher 10\(^6\) \(k_{\text{obs}} \) (50 °C) = 2.75 s\(^{-1}\) with respect to 10\(^6\) \(k_{\text{obs}} \) (25 °C) = 2.40 s\(^{-1}\) supports I, mechanism for the substitution reaction.

EXPERIMENTAL

K[Cr(C\(_6\)O\(_4\))\(_2\)(H\(_2\)O)\(_3\)] \(\cdot \) 3H\(_2\)O was prepared as described as reported [27]. An accurate amount of K[Cr(C\(_6\)O\(_4\))\(_2\)(H\(_2\)O)\(_3\)] \(\cdot \) 3H\(_2\)O was completely dissolved in a definite volume of water. The chromium(III) concentration was determined by iodometric method and AAS. A.R grade L-Dopa was collected from Dr Reddy’s Laboratories, Hyderabad, India and used without further purification. Doubly distilled water was used throughout the reaction. pH of the solution was maintained using a SYSTRONICS digital pH meter 335 equipped with a combination of glass Ag/AgCl/Cl\(_2\) (3 mol dm\(^{-3}\) NaCl) electrode. It was calibrated with standard buffers of pH 4.0, 7.0 and 9.0 (Merck). Absorbances were recorded with a JASCO V-630 uv-visible spectrophotometer. 10 mm Quartz cuvettes were used. The IR spectra were taken with a JASCO FT-IR-4100 spectrophotometer.

Antiparkinsonian study

Acute haloperidol induced catalepsy test: The catalepsy test was performed as per the reported method [28]. The adult healthy mice of either sex were divided into eight groups of six animals each. Group I animals served as normal control group. Group II received solvent and served as solvent control group; group III-V received L-Dopa at dose level of (50, 100 and 200 mg/kg respectively p.o.) and group VI-VIII received \(\text{cis-}[\text{Cr}(\text{C}_6\text{H}_4\text{O}_2\text{O})(\text{OH}_2)\text{]} - \) L-Dopa complex at dose level of (50, 100 and 200 mg/kg respectively p.o.), 60 min after pretreatment with haloperidol (1 mg/kg i.p.). The duration of catalepsy was measured at 15, 30, 60, 90 and 120 min. using the bar test.

The catalepsy was assessed as the time during which the mouse maintained an imposed position with both forelimb extended and rested on a 4 cm high wooden bar (1 cm in diameter). The end point of catalepsy was considered to occur when both fore paws were removed from the bar or if the animal moved its head in an exploratory manner. A cut-off time of 300 s was applied. Between the 2 determinations, the animals were returned to their home cage. All the observations were made in a quiet room at 23-25 °C.

As per the scoring method, if the animal maintained the imposed posture for at least 20 s, it was considered to be cataleptic and the time was recorded in seconds.

Chronic haloperidol induced catalepsy test: Solvent (10 mL/kg p.o.), L-Dopa (50,100 and 200 mg/kg p.o.) and \(\text{cis-}[\text{Cr}(\text{C}_6\text{H}_4\text{O}_2\text{O})(\text{OH}_2)\text{]} - \) L-Dopa complex (50, 100 and 200 mg/kg p.o.) were administered daily for 1 h prior to intraperitoneal injection of haloperidol (1 mg/kg) for 21 days. Catalepsy test was carried out on days 5, 9, 13, 17 and 21. The catalepsy was measured by the scoring method, if the animal maintained the imposed posture for at least 22 s, it was considered to be cataleptic and the time was recorded in seconds.

The experimental protocol (Approval No. 09/09/IAEC/ SOAU) was approved by the Institutional Animal Ethics Committee (IAEC), SOA University (Regd. No. 1171/C/08/ CPCSEA).

Kinetic measurements: Potassium nitrate solution was used to maintain ionic strength of the solution. The solution of L-Dopa at the desired pH was thermally equilibrated at a given temperature. Then, the required amount of thermally equilibrated chromium(III) oxalato complex solution was added to the L-Dopa solution and the change in absorbance was monitored at 413 nm. Pseudo-first-order conditions were maintained throughout these experiments by using a large excess of L-Dopa. [Chromium(III)]/[L-Dopa] was 1:15, 1:12.5, 1:10, 1:7.5,1:5. The rate constant \(k_{\text{obs}} \) were obtained from the slopes of \(\ln(A_\infty - A_o) \) versus time plot;

\[
\ln(A_\infty - A_o) = \ln(A_\infty - A_o) \cdot k_{\text{obs}} \cdot t
\]

where \(A_o, A_c, A_\infty \) are the absorbances of the solution at the beginning, at time \(t \) and at equilibrium respectively. The reported rate data are an average of duplicate runs and were reproducible to within ± 3 %. The correlation coefficients of plots used to determine \(k_{\text{obs}} \) were found to be 0.98 in most cases.

RESULTS AND DISCUSSION

Substitution products and stoichiometry: Addition of acidic solution of K[Cr(C\(_6\)O\(_4\))\(_2\)(H\(_2\)O)\(_3\)] \(\cdot \) 3H\(_2\)O to a solution of L-Dopa resulted in an increase in absorbance in the visible range. The absorption spectra of mixture of chromium(III) oxalato complex and L-Dopa indicate the formation of a new complex (Fig. 1), due to the blue shift of \(\lambda_{\text{max}} \) from 472 to 413 nm. The jobs plot indicates the formation of a 1:1 metal ligand complex. The tentative structure of the product is shown in Fig. 2.

![Fig. 1](image)

Effect of variables on the reaction rate: The reaction was studied at varying pH (3.5-6.0), keeping \(I = 0.1 \text{ mol dm}^{-3} \) and \([\text{cis-}[\text{Cr}(\text{C}_6\text{H}_4\text{O}_2\text{O})(\text{OH}_2)\text{]}] = 1.0 \times 10^{-3} \text{ mol dm}^{-3} \) at 50 °C. With the decrease in [H\(^+\)], the \(k_{\text{obs}} \) values increased (Table-1). To explain the [H\(^+\)] dependence on the reaction rate, it is necessary to consider the protonation equilibria of L-Dopa, as shown in Scheme-I.
When pH is varied from 3.5 to 6.0, the most active species involved in the substitution reaction is likely to be [H₈L]⁺ (Scheme-I). The K₁, K₂, K₃, and K₄ values [29] of L-Dopa at 25 °C are 5.01 × 10⁻³, 2 × 10⁻⁹, 2 × 10⁻¹⁰, 3.98 × 10⁻¹⁴, respectively. The hydrolysis constant K₉⁺ at 25 °C for cis-[Cr(C₂O₄)₂(H₂O)₂]⁻ is 1.94 × 10⁴ [30]. Hence the amount of cis-[Cr(C₂O₄)₂(H₂O)(OH)]⁺ will be negligibly small at pH 3.5.

[L-Dopa]₁ dependence on the rate was studied at fixed [H⁺] and at 50 °C. [L-Dopa]₁ was varied from 5 × 10⁻³ to 15 × 10⁻³ mol dm⁻³ at constant [cis-[Cr(C₂O₄)₂(OH)₂]⁻] = 1.0 × 10⁻³ mol dm⁻³. As [L-Dopa]₁ was increased, k₉obs increased in a nonlinear fashion, indicating outer sphere complex formation between cis-[Cr(C₂O₄)₂(OH)₂]⁻ and L-Dopa (Fig. 3). The order of the reaction with respect to [L-Dopa] is unity up to 7.5 × 10⁻³ and at higher [L-Dopa] the order is fractional. A Michaelis-Menton type plot (Fig. 3) also indicates complex formation between cis-[Cr(C₂O₄)₂(OH)₂]⁻ and L-Dopa.

To study the effect variation of concentration of chromium(III) complexes, cis-[Cr(C₂O₄)₂(OH)₂]⁻ was varied at constant concentration of L-Dopa. The pseudo-first order rate constant remain almost constant, giving 10⁵ k₉obs = (14.7 ± 0.1) s⁻¹ when [cis-[Cr(C₂O₄)₂(OH)₂]⁻] was varied from 0.001 to 0.003 mol dm⁻³. The independence of k₉obs at 50 °C under the conditions [L-Dopa]₁ = 15.0 × 10⁻³ mol dm⁻³, I = 0.1 mol dm⁻³ and pH = 3.5 is in agreement with first-order dependence of rate on [cis-[Cr(C₂O₄)₂(OH)₂]⁻]₁. The substitution reaction of cis-[Cr(C₂O₄)₂(H₂O)₂]⁻ with L-Dopa has been carried out at four different temperatures from 35 to 50 °C at different pH range from 3.5 to 6.0. The values of k₉obs were found to increase by increasing temperature.
The reaction sequence delineated below (Scheme-II) is consistent with the experimental data.

\[
\text{cis-}[\text{Cr(C_2O_4)_2(H_2O)_2}]^+ + \text{H}_2\text{L} \xrightarrow{K_{an}} \text{cis-}[\text{Cr(C_2O_4)_2(H_2O)_2}][\text{H}L]\]

\[
\text{Scheme-II: Mechanism of reaction between [Cr(III) complex] and L-Dopa}
\]

The rate law for the substitution reaction can be derived in the following manner.

\[
\text{Rate} = k_{\text{obs}}[\text{O.S}][\text{[Cr(III) complex]}][\text{H}_2\text{L}] = k_{\text{an}}K_{\text{OS}}[\text{[Cr(III) complex]}][\text{H}_2\text{L}]^+ [\text{H}^+] \]

\[
[\text{Cr(III) complex}]_\tau = [\text{Cr(III) complex}]_\tau + [\text{O.S}]
\]

\[
[\text{Cr(III) complex}]_\tau = [\text{Cr(III) complex}]_\tau + [\text{H}^+] + K_{\text{OS}}[\text{H}_2\text{L}]^+ /[\text{H}^+]
\]

\[
[\text{Cr(III) complex}]_\tau = [\text{Cr(III) complex}]_\tau + [\text{H}^+] + K_{\text{OS}}[\text{H}_2\text{L}]^+ /[\text{H}^+] \]

\[
[H\text{L}]^+ = [H\text{L}]^+ + [K_{\text{OS}}[\text{H}_2\text{L}]^+ /[\text{H}^+]
\]

\[
[H\text{L}]^+ = [H\text{L}]^+ + [K_{\text{OS}}[\text{H}_2\text{L}]^+ /[\text{H}^+]
\]

\[
\text{Substituting the value of [Cr(III) complex]_\tau and [H}_2\text{L}]^+ in eqn. 2, we get:}
\]

\[
\text{Rate} = k_{\text{obs}}[\text{Cr(III) complex}]_\tau [H\text{L}]^+ [H\text{L}]^+ /[H\text{L}]^+ + K_{\text{OS}}[H\text{L}]^+ /[H\text{L}]^+
\]

\[
\text{Since we know that}
\]

\[
\text{Rate} = k_{\text{obs}}[\text{[Cr(III) complex]}_\tau]
\]

\[
k_{an} = \frac{[H\text{L}]^+ + K_{\text{OS}}[\text{H}_2\text{L}]^+ }{[\text{H}^+] + K_{\text{OS}}[\text{H}_2\text{L}]^+}
\]

The above mentioned rate law was tested by plotting \(k_{an}^{-1}\) versus \([\text{L-Dopa}]^{-1}\). The plots (Fig. 4) are linear with \(R^2 = 0.98\) for the anation reaction at all pH values from 3.5 to 6.0 at 50 °C. The value of \(k_{an}\) was calculated from the reciprocal of the intercept and \(K_{an}\) (the outer sphere association constant) was calculated from the slope of the plot. \(k_{an}\) and \(K_{an}\) are collected in Table-2. It is generally accepted that complex formation proceeds by a mechanism in which the rate determining step is the change from an outer sphere to an inner sphere complex. The value for \(k_{an}\) at 50 °C is 2.75 × 10⁴ s⁻¹. The far greater value of \(k_{an}\) compared to that of \(k_{an}\) (2.40 × 10⁴) (25 °C) [32] supports the fact that the anation follows an I mechanism.
Characterization of the product complex: A mixture of solution of 0.002 mol dm$^{-1}$ K[Cr(C$_2$O$_4$)$_2$(H$_2$O)$_2$] 3H$_2$O and 0.001 mol dm$^{-3}$ L-Dopa at pH 5.3 were heated at 50 °C for 5 h and then transfer to a desiccator for drying. The resulting product was recrystallized and then it was washed with ethanol and diethyl ether. The product retained most of the peaks of L-Dopa. However, the carboxylate % protection of catalepsy, activation entropy gly glycine, ala alanine, val valine, pyc-2 pyridine-2-carboxylic acid, pyc-3 pyridine-3-carboxylic acid, H$_2$O$^+$ H$_2$O$^-$, ΔH° activation enthalpy, ΔS° activation entropy.

Assessment of catalepsy

Acute haloperidol induced catalepsy: The result of the study is given in Table-3. The cis-[Cr(C$_2$O$_4$)$_2$(OH$_2$)$_2$]-L-Dopa complex showed a significant (p < 0.05) decrease in cataleptic score that peaked at 30 min of post treatment. The % decrease of cataleptic score is registered as 81.4 at the end of 2 h in cis-[Cr(C$_2$O$_4$)$_2$(OH$_2$)$_2$]-L-Dopa complex whereas L-Dopa demonstrated 73.1 at the same time interval. The % reduction of catalepsy was dose and time dependent in both test drugs at all tested dose levels. However the extent of reduction of catalepsy was reported more in cis-[Cr(C$_2$O$_4$)$_2$(OH$_2$)$_2$]-L-Dopa complex when compared with treatment of L-Dopa alone in all tested dose level and time interval. The comparatively more decrease in catalepsy score of cis-[Cr(C$_2$O$_4$)$_2$(OH$_2$)$_2$]-L-Dopa complex treated animals may be due to inhibition of peripheral degradation of L-Dopa to dopamine in the presence of dopa decarboxylase enzyme, thereby comparatively increase the availability of dopamine in the brain and hence the more response.

Chronic haloperidol induced catalepsy: The test result of chronic haloperidol induced catalepsy is given in Table-4. The test result revealed that cis-[Cr(C$_2$O$_4$)$_2$(OH$_2$)$_2$]-L-Dopa complex registered progressive fall of catalepsy with respect to increasing dose and advanced days of treatment. The % fall of catalepsy of cis-[Cr(C$_2$O$_4$)$_2$(OH$_2$)$_2$]-L-Dopa complex at 200 mg/kg, was calculated as 91.8 on 21$^{\text{st}}$ day of the study, whereas at the same time the L-Dopa possess 83.8. It is interesting that the treatment of complex of cis-[Cr(C$_2$O$_4$)$_2$(OH$_2$)$_2$]-L-Dopa has more degree of fall of catalepsy in less quantity of L-Dopa, than L-Dopa alone. The more potentiality of the said complex may be due to decrease in peripheral degradation of L-Dopa to dopamine, thereby elevate the brain level of L-Dopa.

Conclusion

The kinetic and pharmaceutical study of cis-[Cr(C$_2$O$_4$)$_2$(OH$_2$)$_2$] complex with antiparkinsonian drug L-Dopa has been reported in this research work. L-Dopa is bound to Cr(III) ion via carboxylate

TABLE-2

<table>
<thead>
<tr>
<th>Systems (metal center/nucleophile)</th>
<th>k_on (s$^{-1}$)</th>
<th>K_on</th>
<th>ΔH° (kJ mol$^{-1}$)</th>
<th>ΔS° (J K$^{-1}$ mol$^{-1}$)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cr(H$_2$O)$_6^{3+}$/H$_2$O*</td>
<td>2.40 × 105 (25 °C)</td>
<td>-</td>
<td>108.6</td>
<td>11.6</td>
<td>[31]</td>
</tr>
<tr>
<td>Cr(H$_2$O)$_6^{3+}$/gly</td>
<td>(3.34-6.8) × 105 (25 °C)</td>
<td>-</td>
<td>51.9</td>
<td>-2.7</td>
<td>[32]</td>
</tr>
<tr>
<td>Cr(H$_2$O)$_6^{3+}$/ala</td>
<td>0.58 × 103 (35 °C)</td>
<td>-</td>
<td>64.9</td>
<td>-113.6</td>
<td>[15,16,18,33]</td>
</tr>
<tr>
<td>Cr(H$_2$O)$_6^{3+}$/val</td>
<td>2.34 × 103 (25 °C)</td>
<td>3.29 ± 0.1</td>
<td>90.4</td>
<td>-21.0</td>
<td>[15,16,18,33]</td>
</tr>
<tr>
<td>Cr(H$_2$O)$_6^{3+}$/L-ornithine</td>
<td>1.70 × 104 (40 °C)</td>
<td>18.9</td>
<td>55.8</td>
<td>-138 ± 17</td>
<td>[34,35]</td>
</tr>
<tr>
<td>Cr(H$_2$O)$_6^{3+}$/hydroxyproline</td>
<td>1.00 × 104 (40 °C)</td>
<td>-</td>
<td>72.9</td>
<td>-98.2</td>
<td>[15,16,18,33]</td>
</tr>
<tr>
<td>Cr(H$_2$O)$_6^{3+}$/tryptophan</td>
<td>1.17 × 104 (40 °C)</td>
<td>-</td>
<td>65.6</td>
<td>-112.4</td>
<td>[15,16,18,33]</td>
</tr>
<tr>
<td>Cr(H$_2$O)$_6^{3+}$/methylamine</td>
<td>2.22 × 104 (35 °C)</td>
<td>-</td>
<td>61.1</td>
<td>-116.3</td>
<td>[15,16,18,33]</td>
</tr>
<tr>
<td>Cr(H$_2$O)$_6^{3+}$/glutamine</td>
<td>1.81 × 104 (40 °C)</td>
<td>-</td>
<td>52.0</td>
<td>-150.6</td>
<td>[15,16,18,33]</td>
</tr>
<tr>
<td>Cr(H$_2$O)$_3^{2+}$/pyc-3</td>
<td>10.24 × 103 (35 °C)</td>
<td>5.42</td>
<td>-</td>
<td>-</td>
<td>[36]</td>
</tr>
<tr>
<td>Cr(H$_2$O)$_3^{2+}$/phenylalanine</td>
<td>1.85 × 103 (35 °C)</td>
<td>-</td>
<td>53.6</td>
<td>-141.7</td>
<td>[15,16,18,33]</td>
</tr>
<tr>
<td>[Cr(Salmo)(H$_2$O)$_2$]$_2$/pyc-2</td>
<td>17.6 × 104 (25 °C)</td>
<td>8.75</td>
<td>28.3 ± 0.2</td>
<td>-201.6 ± 0.6</td>
<td>[36]</td>
</tr>
<tr>
<td>[Cr(Salmo)(H$_2$O)$_2$]$_2$/pyc-3</td>
<td>18.76 × 104 (25 °C)</td>
<td>3.00</td>
<td>38.33 ± 0.5</td>
<td>-172 ± 19</td>
<td>[36]</td>
</tr>
<tr>
<td>Cr(H$_2$O)$_3^{2+}$/L-Dopa</td>
<td>1.43 × 104 (50 °C)</td>
<td>2.18</td>
<td>-</td>
<td>-</td>
<td>[7]</td>
</tr>
<tr>
<td>cis-[Cr(C$_2$O$_4$)$_2$(OH$_2$)$_2$/L-Dopa</td>
<td>2.75 × 102 (50 °C)</td>
<td>0.104</td>
<td>50.13</td>
<td>-68.6</td>
<td>This work</td>
</tr>
</tbody>
</table>

TABLE-3

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Dose (mg/kg)</th>
<th>Catalepsy scores</th>
<th>15 min</th>
<th>30 min</th>
<th>60 min</th>
<th>90 min</th>
<th>120 min</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal control</td>
<td>10 mL/kg</td>
<td>1 ± 0.0</td>
<td>1.30 ± 0.08</td>
<td>1.43 ± 0.12</td>
<td>1.39 ± 0.22</td>
<td>1.46 ± 0.31</td>
<td></td>
</tr>
<tr>
<td>Solvent control</td>
<td>1</td>
<td>28 ± 0.98</td>
<td>69 ± 2.79</td>
<td>85 ± 1.21</td>
<td>110 ± 1.09</td>
<td>145 ± 1.12</td>
<td></td>
</tr>
<tr>
<td>L-Dopa</td>
<td>50</td>
<td>24 ± 1.52 (12.4)</td>
<td>51 ± 1.52 (26.1)</td>
<td>55 ± 1.07 (35.2)</td>
<td>61 ± 1.22* (44.5)</td>
<td>69 ± 1.87* (52.4)</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>22 ± 1.21* (21.4)</td>
<td>36 ± 1.52* (47.8)</td>
<td>40 ± 1.76* (52.9)</td>
<td>49 ± 1.39* (55.5)</td>
<td>55 ± 1.91* (62.1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>14 ± 1.25* (50.0)</td>
<td>22 ± 1.43* (68.1)</td>
<td>28 ± 1.33* (67.1)</td>
<td>32 ± 1.18* (70.9)</td>
<td>39 ± 1.52* (73.1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cis-[Cr(C$_2$O$_4$)$_2$(OH$_2$)$_2$/L-Dopa</td>
<td>50</td>
<td>21 ± 0.96 (25)</td>
<td>41 ± 2.29 (40.6)</td>
<td>42 ± 1.41* (50.6)</td>
<td>46 ± 1.36* (58.1)</td>
<td>51 ± 1.78* (64.8)</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>17 ± 1.29* (39.2)</td>
<td>20 ± 2.11* (71.0)</td>
<td>24 ± 1.31* (71.8)</td>
<td>26 ± 1.12* (76.4)</td>
<td>31 ± 1.49* (78.6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>11 ± 1.44* (60.7)</td>
<td>18 ± 2.06* (73.9)</td>
<td>21 ± 1.07* (75.3)</td>
<td>23 ± 1.34* (79.1)</td>
<td>27 ± 1.22* (81.4)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Results are expressed in mean ± SEM (n = 6) & applied in one way analysis of variance followed by Dunnet t test, where the parenthesis indicates % protection of catalepsy. *p < 0.01 and *p < 0.001.
oxygen, which is established from the IR spectrum of the product. The kinetic aspects of the study revealed that the complex formation proceeds by a mechanism in which the rate determining step is the change from an outer sphere to inner sphere complex. The antiparkinsonian studies of the product complex show the effectiveness of the drug, as a reduced dose compared to free L-Dopa produced significant recovery from catalepsy.

ACKNOWLEDGEMENTS

The authors are thankful to Siksha ‘O’ Anusandhan University, Bhubaneswar, India for providing the necessary facilities to carry out the research experiments.

REFERENCES

