Synthesis and Antibacterial Evaluation of Tetrahydropyrimidine-5-carboxamide

N. EDAYADULLA¹,², S. ANAND¹ and T. SHANKAR²,*

¹Department of Chemistry, VEL TECH, Avadi, Chennai-600 062, India,
²Department of Chemistry, Manonmaniam Sundaranar University, Tirunelveli-627 012, India

*Corresponding authors: E-mail: edayam2004@gmail.com; atshankar80@gmail.com

Received: 9 June 2017; Accepted: 17 August 2017; Published online: 31 December 2017; AJC-18686

INTRODUCTION

Biginelli compounds or dihydropyrimidinones (DHPMs) exhibit a broad spectrum of biological activity. For example, some of these compounds are very potent calcium channel blockers and act as antihypertensive, antiviral, antitumor and anti-inflammatory agents [1-8]. Previous studies on biological activity of dihydropyridines (DHPs) have revealed that dihydropyridines having carbamoyl moieties at 3rd and 5th positions showed significant antituberculosis activity [9]. These observations have prompted us to undertake the designing of new dihydropyrimidinones derivatives against microbial resistance. The presence of several interacting functional groups in Biginelli compounds determines their great synthetic potentiality [5]. Hence, the required dihydropyrimidinones were synthesized according to the procedure described by Pathak et al. [10]. In addition to this, we addressed the in vitro antibacterial evaluation of synthesized compounds.

EXPERIMENTAL

Melting points were recorded in open capillary tube and are uncorrected. IR spectra were recorded in KBr on 8400S Shimadzu FT-IR Spectrophotometer and NMR spectra were scanned on a Bruker 300 MHz Spectrometer in CDCl₃/DMSO-d₆ using TMS as internal standard. The chemical shifts are expressed in δ-scale. Elemental analyses were carried out on Perkin-Elmer 2400 II instrument. Purity of synthesized compounds was checked by TLC using silica gel-G and spots were detected in iodine chamber.

A series of new dihydropyrimidine-2H-ones/thiones were synthesized and evaluated in vitro for their antibacterial activity. Characterization of newly synthesized dihydropyrimidines was done by physical and spectral data. All the synthesized compounds were evaluated for their antibacterial activity. Amongst all, compounds 3e and 4e registered high activity against the bacterial strain when compared to standard drug.

Keywords: Dihydropyrimidones, Biginelli reactions, Grindstone technique, Antibacterial.

General procedure for the preparation of 4-(aryl)-6-methyl-2-oxo-N-phenyl-1,2,3,4-tetrahydropyrimidine-5-carboxamides: A mixture of an heterocyclic aldehyde (0.01 mol), N-phenylacetocacetamide (0.01 mol), urea/thiourea (0.01 mol), cupric chloride (0.01 mol) and 2-3 drops of conc. HCl was ground together to give a syrup under solvent-free condition which was left overnight. The contents were poured into ice-cold water and the product that separated was filtered, dried and crystallized. All the compounds have been synthesized as per reported procedure [10](Scheme-I).

4-(Thiophen-2-yl)-6-methyl-2-oxo-N-phenyl-1,2,3,4-tetrahydropyrimidine-5-carboxamide (3a): Yield: 88 %, m.p.: 152 °C (aq. EtOH); IR (KBr, νmax, cm⁻¹): 3378, 3270 (NH), 1676 (C=O of amide). ¹H NMR (300 MHz, CDCl₃ + DMSO-d₆): δ 2.11 (s, 3H, 6-CH₃), 5.60 (s, 1H, H-4), 7.04-8.30 (m, 8H, Ar-H), 8.90 (s, 1H, 1-NH), 9.41 (s, 1H, NH of amide).

13C NMR (75 MHz): δ 18.1, 51.8, 109.5, 120.4, 121.6, 125.6, 128.0 128.9, 133.2, 137.6, 144.2, 147.1, 148.4, 152.3, 162.8.

4-(Thiophen-3-yl)-6-methyl-2-oxo-N-phenyl-1,2,3,4-tetrahydropyrimidine-5-carboxamide (3b): Yield: 84 %, m.p.: 143-145 °C (aq. EtOH); IR (KBr, νmax, cm⁻¹): 3379, 3272 (NH), 1678 (C=O of amide). ¹H NMR (300 MHz, CDCl₃ + DMSO-d₆): δ 2.12 (s, 3H, 6-CH₃), 5.58 (s, 1H, H-4), 7.10-8.22 (m, 8H, Ar-H), 8.69 (s, 1H, 3-NH), 8.90 (s, 1H, 1-NH), 9.38 (s, 1H, NH of amide).

4-(Pyridin-2-yl)-6-methyl-2-oxo-N-phenyl-1,2,3,4-tetrahydropyrimidine-5-carboxamide (3c): Yield: 89 %,
m.p.: 178 °C (aq. EtOH); IR (KBr, ν \text{max} cm\(^{-1}\): 3378, 3268 (NH), 1682 (C=O of amide). \(^1\)H NMR (300 MHz, CDCl\(_3\) + DMSO-d\(_6\)) : δ 2.24 (s, 3H, -CH\(_3\)), 5.54 (s, 1H, H-4), 7.20-8.26 (m, 9H, Ar-H), 8.06 (s, 1H, 3-NH), 8.16 (s, 1H, 1-NH), 8.72 (s, 1H, NH of amide). \(^1\)C NMR (75 MHz) : δ 18.2, 51.8, 107.8, 111.2, 120.4, 123.1, 128.4, 129.1, 130.4, 131.5, 132.3, 137.8, 142.9, 150.2, 161.6, 162.8.

4-(Pyridin-3-yl)-6-methyl-2-oxo-N-phenyl-1,2,3,4-tetrahydropyrimidine-5-carboxamide (4c): Yield: 86 %, m.p.: 163-165 °C (aq. EtOH); IR (KBr, ν \text{max} cm\(^{-1}\): 3264, 3172 (NH), 1678 (C=O of amide), 1438 (C=S). \(^1\)H NMR (300 MHz, CDCl\(_3\) + DMSO-d\(_6\)) : δ 2.22 (s, 3H, -CH\(_3\)), 5.54 (s, 1H, H-4), 7.12-8.32 (m, 9H, Ar-H), 7.96 (s, 1H, 3-NH), 8.72 (s, 1H, 1-NH), 8.78 (s, 1H, NH of amide). \(^1\)C NMR (75 MHz) : δ 18.2, 51.8, 107.8, 119.8, 123.2, 126.2, 126.9, 127.4, 128.2, 128.4, 132.8, 134.1, 138.2, 150.2, 163.7.

4-(Pyridin-2-yl)-6-methyl-2-oxo-N-phenyl-1,2,3,4-tetrahydropyrimidine-5-carboxamide (4d): Yield: 86 %, m.p.: 177-179 °C (aq. EtOH); IR (KBr, ν \text{max} cm\(^{-1}\): 3268, 3166 (NH), 1662 (C=O of amide), 1434 (C=S). \(^1\)H NMR (300 MHz, CDCl\(_3\) + DMSO-d\(_6\)) : δ 2.22 (s, 3H, -CH\(_3\)), 5.48 (s, 1H, H-4), 6.32-7.16 (m, 1H, CH-4), 7.12-8.32 (m, 9H, Ar-H), 8.32 (s, 1H, 3-NH), 8.42 (s, 1H, 1-NH), 8.78 (s, 1H, NH of amide). \(^1\)C NMR (75 MHz) : δ 18.6, 52.4, 108.8, 121.8, 128.1, 128.9, 130.4, 130.9, 134.1, 138.2, 143.2, 150.2, 163.7.

4-(Indol-2-yl)-6-methyl-2-oxo-N-phenyl-1,2,3,4-tetrahydropyrimidine-5-carboxamide (4e): Yield: 86 %, m.p.: 177-179 °C (aq. EtOH); IR (KBr, ν \text{max} cm\(^{-1}\): 3268, 3166 (NH), 1662 (C=O of amide), 1434 (C=S). \(^1\)H NMR (300 MHz, CDCl\(_3\) + DMSO-d\(_6\)) : δ 2.22 (s, 3H, -CH\(_3\)), 5.48 (s, 1H, H-4), 6.32-7.16 (m, 1H, CH-4), 7.12-8.32 (m, 9H, Ar-H), 8.32 (s, 1H, 3-NH), 8.42 (s, 1H, 1-NH), 8.78 (s, 1H, NH of amide). \(^1\)C NMR (75 MHz) : δ 18.6, 52.4, 108.8, 121.8, 128.1, 128.9, 130.4, 130.9, 134.1, 138.2, 143.2, 150.2, 163.7.

4-(Pyridin-2-yl)-6-methyl-2-thioxo-N-phenyl-1,2,3,4-tetrahydropyrimidine-5-carboxamide (4f): Yield: 91 %, m.p.: 127 °C (aq. EtOH); IR (KBr, ν \text{max} cm\(^{-1}\): 3270, 3184 (NH), 1672 (C=O of amide), 1440 (C=S). \(^1\)H NMR (300 MHz, CDCl\(_3\) + DMSO-d\(_6\)) : δ 2.26 (s, 3H, -CH\(_3\)), 5.44 (s, 1H, CH-4), 7.26-7.88 (m, 10H, Ar-H), 7.96 (s, 1H, 3-NH), 8.67 (s, 1H, 1-NH), 8.78 (s, 1H, NH of amide).

9.43 (s, 1H, NH of amide), 10.98 (s, 1H, Indole-NH). 13C NMR (75 MHz): δ 20.5, 52.0, 108.4, 111.2, 121.6, 123.7, 126.9, 128.9, 130.4, 131.5 132.3, 137.8, 142.9, 151.4, 164.8.

Antibacterial activity: The antibacterial activity was assessed by the disk diffusion method [11-14]. Compounds 3a-f and 4a-f were evaluated for in vitro activity against Staphylococcus aureus and Salmonella typhi at a concentration of 10 µg/mL in meat peptone agar medium. Amikacin was used as a standard for antibacterial screening. For each biological activity test, two to three experiments were performed and the average zone of inhibition was reported in Table-1.

All 12 compounds 3a-f and 4a-f were evaluated for antibacterial activity. Compounds 3e, 3f, 4c and 4e exhibited high activity against Gram-positive bacteria, S. aureus; of these 4e registered very high activity against S. aureus. Compounds 3e, 3f, 4d, 4e and 4f showed high activity against Gram-negative bacteria, S. typhi; of these 3e and 4e registered very high activity against S. typhi and all other compounds showed moderate antibacterial activity.

Conclusion

In summary, a simple, efficient and more eco-friendly grinding technique is developed for the synthesis of 3,4-dihydropyrimidinone using heterocyclic aldehyde. Moreover, the catalyst used is easily available and inexpensive. Adopting the above technique, six dihydropyrimidin-2H-ones (3a-f) and six dihydropyrimidine-2H-thiones (4a-f) have been prepared and characterized by IR and 13C NMR. Furthermore, dihydropyrimidinone derivative contains carbamoyl group in 5-position. These observations have prompted us to undertake the synthesis of new dihydropyrimidonines derived from N-phenylacetoacetamide as 1,3-dicarbonyl component with a great interest to evaluate them for further pharmacological studies.

REFERENCES

TABLE-1

<table>
<thead>
<tr>
<th>Compd.</th>
<th>Zone of inhibition (mm) at 10 µg/mL</th>
<th>Compd.</th>
<th>Zone of inhibition (mm) at 10 µg/mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>S. aureus</td>
<td>S. typhi</td>
<td>No.</td>
</tr>
<tr>
<td>3a</td>
<td>11</td>
<td>12</td>
<td>4a</td>
</tr>
<tr>
<td>3b</td>
<td>10</td>
<td>11</td>
<td>4b</td>
</tr>
<tr>
<td>3c</td>
<td>12</td>
<td>10</td>
<td>4c</td>
</tr>
<tr>
<td>3d</td>
<td>11</td>
<td>13</td>
<td>4d</td>
</tr>
<tr>
<td>3e</td>
<td>14</td>
<td>18</td>
<td>4e</td>
</tr>
<tr>
<td>3f</td>
<td>13</td>
<td>14</td>
<td>4f</td>
</tr>
<tr>
<td>Amikacin</td>
<td>16</td>
<td>22</td>
<td>Amikacin</td>
</tr>
</tbody>
</table>

(Standard) (Standard)