Variation of Physico-Chemical Attributes of Seed Oil Between Two Developing Cultivars of Sesame Grown Under Similar Agroclimatic Conditions in Pakistan

Naveed Ahmad1,2,*, Farooq Anwar2, Zahed Mahmood1, Shaukat Ali Shahid3, Imran Shakir4 and Shabnem Latif5

1Department of Chemistry & Biochemistry, University of Agriculture, Faisalabad-38040, Pakistan

2Department of Chemistry, University of Sargodha, Sargodha-40100, Pakistan

3Department of Physics, University of Agriculture, Faisalabad-38040, Pakistan

4Deanship of Scientific Research College of Engineering, Post Office Box 800, King Saud University, Riyadh, Saudia Arabia

5Department of Pharmacy, Euro Campus, Hajvery University, Lahore-54000, Pakistan

*Corresponding author: E-mail: mnavedahmad@yahoo.com

Abstract

The present work appraises variation of physico-chemical attributes of seed oils between two cultivars (V-96006 & V-90005) of sesame (Sesamum indicum L.) grown under similar agroclimatic conditions. Sesame seeds of cultivar V-96006 & V-90005 had oil, 41.20 and 46.95 %; moisture, 8.09 and 9.54 %; protein, 32.05 and 30.19 %; fiber, 2.41 and 2.10 % while ash 4.39 and 4.78 %, respectively. The extracted sesame seed oils had iodine value between 107 and 110 (g of I/100 g of oil), refractive index (40 °C) 1.4624 and 1.4638, density (24 °C) 0.87 and 0.88 mg/mL, free fatty acids 0.49 and 0.54 %, saponification value 190.24 and 190.95 mg of KOH/g of oil and unsaponifiable matter 2 and 2.60 %, respectively. The tested oils, in terms of measurements of peroxide value (1.96-2.20 meq/kg), conjugated dienes (2.01-2.38) and conjugated trienes (0.64-0.66) exhibited good oxidative state. The amounts of total tocopherols (ag and d) in the tested sesame oils of V-96006 & V-90005 cultivars were found to be 619.5 and 644.6 mg/kg, respectively with g-tocopherol as the principal compound. GLC analysis of the oils revealed the occurrence of mainly linoleic acid (C18:2) 44.52, 44.27 %; oleic acid (C18:1) 39.34, 40.07 %; palmitic acid (C16:0) 9.82, 9.23 % and stearic acid (C18:0) 5.21, 4.98 %, respectively. Small amount of linolenic acid (C18:3) < 1.0 % was also detected. The results of the present study showed that both of these sesame cultivars, except tocopherols, have comparable physico-chemical attributes and thus advocate selection of this potential oil seed crop for cultivation under the local agroclimatic conditions to produce good quality high-linoleic oil.

Keywords

Sesame, Oil extraction, Fatty acids, Tocopherols, HPLC, GLC, Oxidative stability.

Reference (37)

1.      D. Bedigian and J.R. Harlan, Econ. Bot., 40, 137 (1986); doi:10.1007/BF02859136.

 

2.      H.A. Abou-Gharbia, F. Shahidi, A. Adel, Y. Shehata and M.M. Youssef, J. Am. Oil Chem. Soc., 74, 215 (1997); doi:10.1007/s11746-997-0126-9.

 

3.      I. Tomazic and Z. Korosec-Koruza, Genet. Resour. Crop Evol., 50, 779 (2003); doi:10.1023/A:1025029903549.

 

4.      S.S. Desphande, U.S. Desphande, D.K. Salunkhe and Y.H. Hui, Sesame oil, In: Bailey’s Industrial Oil and Fat Products, Interscience Publishers: New York, edn 5, pp. 457-497 (1996).

 

5.      M.V. Reshma, C. Balachandran, C. Arumughan, A. Sunderasan, D. Sukumaran, S. Thomas and S.S. Saritha, Food Chem., 120, 1041 (2010); doi:10.1016/j.foodchem.2009.11.047.

 

6.      L. Ashakumary, I. Rouyer, Y. Takahashi, T. Ide, N. Fukuda, T. Aoyama, T. Hashimoto, M. Mizugaki and M. Sugano, Metabolism, 48, 1303 (1999); doi:10.1016/S0026-0495(99)90272-X.

 

7.      A.A. Moazzami, Ph.D. Thesis, Sesame Seed Lignans: Diversity, Human Metabolism and Bioactivities, Swedish University of Agricultural Sciences, Uppsala, Sweden (2006); ISBN 91-576-7147-8.

 

8.      B. Jannat, M. Oveisi, N. Sadeghi, M. Hajimahmoodi, M. Behzad, E. Choopankari and A.A. Behfar, Iran J. Environ. Health, 7, 97 (2010).

 

9.      F. Hirata, K. Fujita, Y. Ishikura, K. Hosoda, T. Ishikawa and H. Nakamura, Atherosclerosis, 122, 135 (1996); doi:10.1016/0021-9150(95)05769-2.

 

10.  Y. Matsumura, S. Kita, Y. Tanida, Y. Taguchi, S. Morimoto, K. Akimoto and T. Tanaka, Biol. Pharm. Bull., 21, 469 (1998); doi:10.1248/bpb.21.469.

 

11.  M. Hajimahmoodi, M.R. Oveisi, N. Sadeghi, B. Jannat, Z. Bahaeddin and S. Mansoori, Iran. J. Pharm. Res., 7, 135 (2008).

 

12.  G.A. Crosby, Food Technol., 59, 32 (2005).

 

13.  K. Yamashita, Y. Nohara, K. Katayama and M. Namiki, J. Nutr., 122, 2440 (1992).

 

14.  K. Akimoto, Y. Kitagawa, T. Akamatsu, N. Hirose, M. Sugano, S. Shimizu and H. Yamada, Ann. Nutr. Metab., 37, 218 (1993); doi:10.1159/000177771.

 

15.  N. Hirose, F. Doi, T. Ueki, K. Akazawa, K. Chijiiwa, M. Sugano, K. Akimoto, S. Shimizu and H. Yamada, Anticancer Res., 12, 1259 (1992).

 

16.  Y. Matsumura, S. Kita, S. Morimoto, K. Akimoto, M. Furuya, N. Oka and T. Tanaka, Biol. Pharm. Bull., 18, 1016 (1995); doi:10.1248/bpb.18.1016.

 

17.  Y. Matsumura, S. Kita, Y. Tanida, Y. Taguchi, S. Morimoto, K. Akimoto and T. Tanaka, Biol. Pharm. Bull., 21, 469 (1998); doi:10.1248/bpb.21.469.

 

18.  N. Hirose, T. Inoue, K. Nishihara, M. Sugano, K. Akimoto, S. Shimizu and H. Yamada, J. Lipid Res., 32, 629 (1991).

 

19.  M. Namiki, Food Rev. Int., 11, 281 (1995); doi:10.1080/87559129509541043.

 

20.  Association of Official Analytical Chemists (AOAC), Official Methods of Analysis of the Association of Official Analytical Chemists, AOAC Inc., Virginia, Method 976.05, edn 15 (1990).

 

21.  International Organization for Standardization (ISO), Animal Feeding Stuffs Determination of Nitrogen and Calculation of Crude Protein Contents, ISO, Geneva, Standard No. 5983 (1981).

 

22.  International Organization for Standardization (ISO), Oilseeds Residues Determination of Total Ash, ISO, Geneva, Standard No.749 (1977).

 

23.  American Oil Chemist’s Society (AOCS), Official and Recommended Practices of the American Oil Chemists Society, AOCS Press, Champaign, edn 5 (1997).

 

24.  C. Paquot and A. Hautfenne, International Union of Pure and Applied Chemistry (IUPAC), Standard methods for the analysis of oils, fats and derivatives, Blackwell Scientific, London, Revised and Enlarged edn. 7 (1987).

 

25.  R.E. Wrolstad, Analysis of Tocopherols and Tocotrienols, In Current Protocols in Food Analytical Chemistry, John Wiley & Sons, U.K. (2003).

 

26.  S. Latif and F. Anwar, J. Am. Oil Chem. Soc., 86, 393 (2009); doi:10.1007/s11746-009-1357-8.

 

27.  T. Gul and Z. Zreen, Asian J. Chem., 23, 2064 (2011).

 

28.  M.K.S. El Khier, K.E.A. Ishag and A.E.G.A. Yagoub, Res. J. Agric. Biol. Sci., 4, 761 (2008).

 

29.  M.I. Mohammed and Z.U. Hamza, J. Appl. Sci. Environ. Manage., 12, 99 (2008).

 

30.  M.K. Unal and H. Yalcin, Grasas Y. Aceites, 59, 23 (2008).

 

31.  J.M. Nzikou, M. Mvoula-Tsieri, C.B. Ndangui, N.P.G. Pambou-Tobi, A. Kimbonguila, B. Loumouamou, T. Silou and S. Desobry, Res. J. Appl. Sci. Eng. Technol., 2, 227 (2010).

 

32.  S. Latif and F. Anwar, Food Chem., 125, 679 (2011); doi:10.1016/j.foodchem.2010.09.064.

 

33.  M.K. Egbekun and M.U. Ehieze, Plant Foods Hum. Nutr., 51, 35 (1997); doi:10.1023/A:1007966103484.

 

34.  S.O. Ibiyemi, T.O. Adepoju, S.O. Okanlawon and V.O. Fadipe, Nig. J. Nutr. Sci., 13, 31 (1992).

 

35.  M.A. Somali, M.A. Bajneid and S.S. Al-Fhaimani, J. Am. Oil Chem. Soc., 61, 85 (1984); doi:10.1007/BF02672051.

 

36.  J.B. Rossell, in eds.: J.B. Rossell and J.L.R. Pritchard, Vegetable Oils and Fats, In Analysis of Oils, Fats and Fatty Foods, Elsevier Applied Sciences, New York, pp. 261-327 (1991).

 

37.  C. Boelhouwer, J. Am. Oil Chem. Soc., 60, 457 (1983); doi:10.1007/BF02543540.


   View Article PDF File Under a Creative Commons License