Selective Adsorption Behaviour of Mesoporous Silica SBA-15-N-Acetylcysteine Imprinted Polymer Based on Surface Molecular Imprinting Technique

Xiaolan Zhu1,*, Qingsheng Zhu2, Jun Yang1 and Yun Gao1

1Research Center of Tobacco and Health, University of Science and Technology of China, Hefei 230052, P.R. China

2Technique Center of Modern Education, Anhui Jianzhu University, Hefei 230022, P.R. China

*Corresponding author: Fax: +86 551 63492065; Tel: +86 551 63492060; E-mail: zxl8906@ustc.edu.cn

Abstract

A new N-acetylcysteine ion-imprinted polymer (NAC-MIP), which can be used for selective adsorption of N-acetylcysteine from aqueous solutions, was successfully prepared based on the supported material of ordered mesoporous silica SBA-15 with the help of surface molecular imprinting technology. The prepared polymer was characterized by Fourier transmission infrared sepectrometry, X-ray diffraction, scanning electron microscopy and 13C NMR spectroscopy. The results showed that the synthesized polymer possessed highly ordered mesoporous structure. The imprinted silica particle showed high selectivity and fast kinetic binding for the template due to its nanosized wall thickness and high surface area.

Keywords

SBA-15, Ordered mesoporous silica, Surface molecular imprinting technology, N-acetylcysteine.

Reference (18)

1.      G. Eisenbrand, M. Otteneder and W. Tang, Toxicol., 190, 249 (2003); doi:10.1016/S0300-483X(03)00204-X.

2.      K. Karthikeyan, G.T. Arularasu, R. Ramadhas and K.C. Pillai, J. Pharm. Biomed. Anal., 54, 850 (2011); doi:10.1016/j.jpba.2010.10.015.

3.      G. Wulff, Chem. Rev., 102, 1 (2002); doi:10.1021/cr980039a.

4.      D. Zhang, Y. Lv, R. Chen and C.C. Shi, Asian J. Chem., 25, 3922 (2013); doi:10.14233/ajchem.2013.13845.

5.      C.H. Lu, W.H. Zhou, B. Han, H.H. Yang, X. Chen and X.R. Wang, Anal. Chem., 79, 5457 (2007); doi:10.1021/ac070282m.

6.      D.M. Gao, Z.P. Zhang, M.H. Wu, C.G. Xie, G.J. Guan and D.P. Wang, J. Am. Chem. Soc., 129, 7859 (2007); doi:10.1021/ja070975k.

7.      D. Tian, G.P. Yong, H.W. Tong and S.M. Liu, Chin. J. Chem. Phys., 23, 479 (2010); doi:10.1088/1674-0068/23/04/479-483.

8.      W.G. Borghard, D.C. Calabro, F.P. DiSanzo, M.M. Disko, J.W. Diehl, J.C. Fried, M.A. Markowitz, M. Zeinali, B.J. Melde and A.E. Riley, Langmuir, 25, 12661 (2009); doi:10.1021/la901334z.

9.      C.X. Song, X.L. Zhang, C.Y. Jia, P. Zhou, X. Quan and C. Duan, Talanta, 81, 643 (2010); doi:10.1016/j.talanta.2009.12.047.

10.  Y. Wang, Y. Yang, L. Xu and J. Zhang, Electrochim. Acta, 56, 2105 (2011); doi:10.1016/j.electacta.2010.11.077.

11.  Y. Liu, Z.C. Liu, J. Gao, J.D. Dai, J. Han, Y. Wang, J.M. Xie and Y.S. Yan, J. Hazard. Mater., 186, 197 (2011); doi:10.1016/j.jhazmat.2010.10.105.

12.  D.Y. Zhao, J.L. Feng, Q.S. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka and G.D. Stucky, Science, 279, 548 (1998); doi:10.1126/science.279.5350.548.

13.  S. Zheng, L. Gao and J. Guo, J. Solid State Chem., 152, 447 (2000); doi:10.1006/jssc.2000.8708.

14.  R. Ojani, E. Ahmadi, J.B. Raoof and F. Mohamadnia, J. Electroanal. Chem., 626, 23 (2009); doi:10.1016/j.jelechem.2008.10.018.

15.  J.E. Lofgreen, I.L. Moudrakovski and G.A. Ozin, ACS Nano, 5, 2277 (2011); doi:10.1021/nn1035697.

16.  B.M. Jung, M.S. Kim, W.J. Kim and J.Y. Chang, Chem. Commun., 46, 3699 (2010); doi:10.1039/c003173a.

17.  Y. Du, J. Yang, W. Tang, X.L. Zhu, L. Zhang and Y. Gao, Asian J. Chem., 24, 1175 (2012).

18.  L. Chen, S. Xu and J. Li, Chem. Soc. Rev., 40, 2922 (2011); doi:10.1039/c0cs00084a.

   View Article PDF File Under a Creative Commons License