Novel Potentiometric Sensors of Ion Imprinted Polymers for Specific Binding of Yttrium(III)

Shuiying Huang, Fengxian Luo and Xiaoqi Lai*

School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, P.R. China

*Corresponding author: E-mail: lxq-199@163.com

Abstract

A novel potentiometric sensor of yttrium(III) ion was designed by embedding the yttrium(III) ion-imprinted polymer (Y3+IIP) particles in poly(vinyl alcohol) matrix. The (Y3+IIP) was prepared by using a single pot method. The sensor shows a Nernstian response for yttrium(III) over a wide concentration range (5 × 10-7 to 5 × 10-2 M) with a slope of 29.8 mV per decade. The detection limit can reach as low as 3 × 10-7 M. The proposed sensor has a fast response time (less than 10 s) and offers a high selectivity with respect to several alkali, alkaline earth and transition metal ions and can be used in a pH range of 6.5-8.5. This sensor was applied as an indicator electrode in the potentiometric titration and has been successfully used for the determination yttrium(III) in the yttrium-aluminium alloy sample with direct potentiometry.

Keywords

Potentiometric sensor, Ion imprinted polymer, Polymerparticles, Yttrium(III).

Reference (19)

1.      D.A. Chowdhury, T. Ogata, S. Kamata and K. Ohashi, Anal. Chem., 68, 366 (1996); doi:10.1021/ac950814b.

2.      M. Shamsipur, M. Yousefi and M.R. Ganjali, Anal. Chem., 72, 2391 (2000); doi:10.1021/ac991155w.

3.      M.R. Ganjali, A. Daftari, M. Rezapour, T. Puorsaberi and S. Haghgoo, Talanta, 59, 613 (2003); doi:10.1016/S0039-9140(02)00573-8.

4.      K. Prasad, R. Kala, T. Prasada Rao and G.R.K. Naidu, Anal. Chim. Acta, 566, 69 (2006); doi:10.1016/j.aca.2006.02.064.

5.      L. Doretti, D. Ferrara, P. Gattolin and S. Lora, Talanta, 44, 859 (1997); doi:10.1016/S0039-9140(96)02130-3.

6.      S. Tingry, C. Innocent, S. Touil, A. Deratani and P. Seta, Mater. Sci. Eng. C, 26, 222 (2006); doi:10.1016/j.msec.2005.10.071.

7.      S.K. Jha, A. Topkar and S.F. D’Souza, J. Biochem. Methods, 70, 1145 (2008); doi:10.1016/j.jprot.2007.12.006.

8.      8 D. Ammann, W.E. Morf, P. Anker, P.C. Meier, E. Pretsch and W. Simon, Ion-Selective Electrode Rev., 5, 3 (1983); doi:10.1016/B978-0-08-031492-1.50005-X.

9.      W.E. Meyerhoff and M.N. Opdycke, Adv. Clin. Chem., 25, 1 (1986); doi:10.1016/S0065-2423(08)60123-7.

10.  G.J. Moody, B.B. Saad and J.D.R. Thomas, Electrode Rev., 10, 71 (1988).

11.  P. Bühlmann, E. Pretsch and E. Bakker, Chem. Rev., 98, 1593 (1998); doi:10.1021/cr970113+.

12.  E. Bakker, P. Buhlmann and E. Pretsch, Chem. Rev., 97, 3083 (1997); doi:10.1021/cr940394a.

13.  S. Sadeghi, F. Fathi and J. Abbasifar, Sens. Actuators B, 122, 158 (2007); doi:10.1016/j.snb.2006.05.018.

14.  A.H. Kamel, F.T.C. Moreira, S.A.A. Almeida and M.G.F. Sales, Electroanalysis, 20, 194 (2008); doi:10.1002/elan.200704039.

15.  X.Q. Lai, Y.Q. Yang and J. Xue, Acta Chim. Sin., 67, 863 (2009).

16.  M.R. Ganjali, A. Daftari, M. Rezapour, T. Puorsaberi and S. Haghgoo, Talanta, 59, 613 (2003); doi:10.1016/S0039-9140(02)00573-8.

17.  M. Shamsipur, M. Yousefi and M.R. Ganjali, Anal. Chem., 72, 2391 (2000); doi:10.1021/ac991155w.

18.  M.R. Ganjali, M. Tahami, M. Shamsipur, T. Poursaberi, M. Hosseini and S. Haghgoo, Electroanalysis, 15, 1251 (2003); doi:10.1002/elan.200302805.

19.  E. Bakker, E. Pretsch and P. Bühlmann, Anal. Chem., 72, 1127 (2000); doi:10.1021/ac991146n.

   View Article PDF File Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.