Hydrogen Evolution from Water in Presence of Diethylamine Acetate and 1-Butyl-3-methyl Imidazolium Tetrafluoroborate Ionic Liquids as Electrocatalysts on Different Electrode Materials

L.Q. Long1, H.D. Hung2, V.T.T. Ha1, P.T.H. Yen1, P.H. Phong1 and L.Q. Hung1,*

1Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam

2Hanoi University of Science, Vietnam National University, 19 Le Thanh Tong, Hoan Kiem, Hanoi, Vietnam

*Corresponding author: Fax: +84 43 8361283; Tel: +84 43 8362008; E-mail: hunglq@ich.vast.ac.vn; hunglq114@yahoo.com


This report presents the investigation of electrochemical generation of hydrogen from water in the presence of the ionic liquids diethylamine acetate ([DEA][Ac]) and 1-butyl-3-methyl imidazolium tetrafluoroborate ([BMIM][BF4]) on different electrode materials such as brass, stainless steel, carbon steel and carbon nanotube paste. Electrochemical properties were investigated using cyclic voltametric, potentiostatic and galvanostatic techniques. The best concentration in water of both ionic liquids studied was obtained at 10 vol. % in cases of brass and stainless steel and for CT3 in solution containing [DEA][Ac]. Efficiencies of hydrogen evolution were determined to be between 94 and 99 %. The materials displayed high stability during the electrolysis process, especially for stainless steel.


Ionic liquid, Hydrogen evolution, Water electrolyte.

Reference (21)

1.      R.F. Service, Science, 296, 1222 (2002); doi:10.1126/science.296.5571.1222.

2.      R.S. Greeley, Science, 295, 1235 (2002); doi:10.1126/science.295.5558.1235.

3.      B.C.H. Steele and A. Heinzel, Nature, 414, 345 (2001); doi:10.1038/35104620.

4.      S.M. Haile, D.A. Boysen, C.R.I. Chisholm and R.B. Merle, Nature, 410, 910 (2001); doi:10.1038/35073536.

5.      R. Ferrigno, A.D. Stroock, T.D. Clark, M. Mayer and G.M. Whitesides, J. Am. Chem. Soc., 124, 12930 (2002); doi:10.1021/ja020812q.

6.      D.L. Wood III, J.S. Yi and T.V. Nguyen, Electrochim. Acta, 24, 3795 (1998); doi:10.1016/S0013-4686(98)00139-X.

7.      M.A. Susan, A. Noda, S. Mitsushima and M. Watanabe, Chem. Commun., 8, 938 (2003); doi:10.1039/b300959a.

8.      P.A.M. Claassen, J.B. van Lier, A.M. Lopez Contreras, E.W.J. van Niel, L. Sijtsma, A.J.M. Stams, S.S. de Vries and R.A. Weusthuis, Appl. Microbiol. Biotechnol., 52, 741 (1999); doi:10.1007/s002530051586.

9.      T.-A.D. Nguyen, S.J. Han, J.P. Kim, M.S. Kim, Y.K. Oh and S.J. Sim, Int. J. Hydrogen Energy, 33, 5161 (2008); doi:10.1016/j.ijhydene.2008.05.019.

10.  R.F. De Souza, J.C. Padilha, R.S. Gonçalves and J. Rault-Berthelot, Electrochem. Commun., 8, 211 (2006); doi:10.1016/j.elecom.2005.10.036.

11.  R.F. De Souza, J.C. Padilha, R.S. Gonçalves, M.O. de Souza and J. Rault-Berthelot, J. Power Sources, 164, 792 (2007); doi:10.1016/j.jpowsour.2006.11.049.

12.  Y. She, Y. Tang, H. Liu and P. He, Chem. Cent. J., 4, 17 (2010); doi:10.1186/1752-153X-4-17.

13.  H. Liu, Y. Liu and J. Li, Phys. Chem. Chem. Phys., 12, 1685 (2010); doi:10.1039/b921469k.

14.  C. Zhao, G. Burrell, A.A. Torriero, F. Separovic, N.F. Dunlop, D.R. MacFarlane and A.M. Bond, J. Phys. Chem. B, 112, 6923 (2008); doi:10.1021/jp711804j.

15.  M.G. Freire, C.M.S.S. Neves, I.M. Marrucho, J.A.P. Coutinho and A.M. Fernandes, J. Phys. Chem. A, 114, 3744 (2009); doi:10.1021/jp903292n.

16.  J.D. Wadhawan, U. Schröder, A. Neudeck, S.J. Wilkins, R.G. Compton, F. Marken, C.S. Consorti, R.F. de Souza and J. Dupont, J. Electroanal. Chem., 493, 75 (2000); doi:10.1016/S0022-0728(00)00308-9.

17.  U. Schroder, J.D. Wadhawan, R.G. Compton, F. Marken, P A Z. Suarez, C.S. Consorti, R.F. de Souza and J. Dupont, New J. Chem., 24, 1009 (2000); doi:10.1039/b007172m.

18.  D.H. Pool, M.P. Stewart, M. O’Hagan, W.J. Shaw, J.A.S. Roberts, R.M. Bullock and D.L. DuBois, Proc. Natl. Acad. Sci. USA, 109, 15634 (2012); doi:10.1073/pnas.1120208109.

19.  A. Safavi, N. Maleki, S. Momeni and F. Tajabadi, Anal. Chim. Acta, 625, 8 (2008); doi:10.1016/j.aca.2008.07.007.

20.  J.P. Feng, W. Jian and Y.Y. Bin, Chin. Sci. Bull., 15, 1781 (2012).

21.  A.J. Bard and L.R. Faulkner, Electrochemical Methods, Fundamentals and Applications, John Wiley & Sons, Inc., p. 163 (2001).

   View Article PDF File Under a Creative Commons License