Evaluation of Plant Biomass as Reducing Agent to Cr(VI) from Electroplating Effluent and Removal of Cr(III) by Adsorption on Hematite Ore

S.S. Modhave1,2 and D.R. Shinde1,*

1Department of Chemistry, Prof. Ramkrishna More College, Akurdi, Pune-411 044, India

2Jagdishprasad Jhabarmal Tibrewala University, Vidyanagari, Jhunjhunu-333 001, India

*Corresponding author: E-mail: drshinde1970@yahoo.com


The UV-visible absorption spectra of untreated electroplating effluent indicate that it contain Cr(VI) in the form of dichromate (Cr2O72-). Quantitative analysis indicated that effluent was acidic in nature and consists of about 146 ppm Cr2O72-. Primary experiment clearly indicated that fresh biomass of plants such as cabbage leaves, cauliflower leaves, Sisuvium, biomass of common agriculture weed, leaves of Colocasia arum, etc. can be used as reducing agent to Cr(VI). pH dependence study showed that acidic and low pH is essential for faster reduction of Cr(VI) to Cr(III). At pH of electroplating effluent and optimized effluent to biomass ratio 60 to 105 minutes were required for nearly 100 % reduction of Cr(VI) to Cr(III). After complete reduction of Cr(VI), it was removed as Cr(OH)3 in presence of hematite ore. Applicability of bench scale experiment for large scale removal of Cr(VI) was tested and results of large scale experiment were found fascinating.


Removal, Cr(III), Electroplating effluent, Hematite.

Reference (21)

1.      C.E. Barrera-Diaz, V. Lugo-Lugo and B. Bilyeu, J. Hazard. Mater., 223-224, 1 (2012); doi:10.1016/j.jhazmat.2012.04.054.

2.      S. Sadhra, J. Petts, S. McAlpine, H. Pattison and S. MacRae, Occup. Environ. Med., 59, 689 (2002); doi:10.1136/oem.59.10.689.

3.      D.E. Kimbrough, Y. Cohen, A.M. Winer, L. Creelman and C. Mabuni, Environ. Sci. Technol., 29, 1 (1999); doi:10.1080/10643389991259164.

4.      A.R. Asgari, F. Vaezi, S. Nasseri, O. Dordelmann and A.H. Mahvi, Iran J. Health Sci. Eng., 5, 277 (2008).

5.      K.A. Komori, A. Rivas, K. Toda and H. Ohtake, Appl. Microbiol. Biotechnol., 33, 117 (1990); doi:10.1007/BF00170582.

6.      T.A. Kurniawan, G.Y.S. Chan, W.-H. Lo and S. Babel, Chem. Eng. J., 118, 83 (2006); doi:10.1016/j.cej.2006.01.015.

7.      V. Madhavi, A. V. B. Reddy, K. G. Reddy, G. Madhavi and T. N. Venkata and K. V. Prasad, Res. J. Recent Sci., 2, 71 (2013).

8.      C. Kim, Q. Zhou, B. Deng, E.C. Thornton and H. Xu, Environ. Sci. Technol., 35, 2219 (2001); doi:10.1021/es0017007.

9.      A.K. De, Environmental Chemistry, Wiley Eastern Ltd. and New Age International Ltd., edn 3, pp. 257-260 (1994).

10.  J. Mendham, R.C. Denney, J.D. Barney and M.J.K. Thomas, Vogel’s Textbook of Quantitative Chemical Analysis, Pearson Edition, edn 6, p. 452 and 707 (2006).

11.  B.N. Figgis and M.A. Hitchman, Ligand Field Theory and its Applications, Wiley VCH; edn 1, pp. 205-207 (2000).

12.  M. Seyf-laye Alfa-Sika, F. Liu and H. Chen, J. Soil Sci. Environ. Manage., 1, 55 (2010).

13.  A.D. Palmer and R.W. Puls, EPA Environmental Assessment Source Book, EPA/540/S-94/505, 57-72 (1994).

14.  G. Qin, M.J. McGuire, N.K. Blute, C. Seidel and L. Fong, Environ. Sci. Technol., 36, 6321 (2005); doi:10.1021/es050486p.

15.  S. Junyapoon and S. Weerapong, KMITL Sci. Technol. J., 6, 1 (2006).

16.  E.F. Scott and J.J. Morgan, Environ. Sci. Technol., 30, 1990 (1996); doi:10.1021/es950741d.

17.  Y. Wu, J. Zhang, Y. Tong and X. Xu, J. Hazard. Mater., 172, 1640 (2009); doi:10.1016/j.jhazmat.2009.08.045.

18.  C. Kim, Q. Zhou, B. Deng, E.C. Thornton and H. Xu, Environ. Sci. Technol., 35, 2219 (2001); doi:10.1021/es0017007.

19.  J.P. Beukes, J.J. Pienaar, G. Lachmann and E.W. Giesekke, Water SA, 25, 363 (1999).

20.  A.D. Bokare and W. Choi, Environ. Sci. Technol., 44, 7232 (2010); doi:10.1021/es903930h.

21.  S.S. Modhave and D.R. Shinde, Int. J. Sci. Eng. Res., 4, 1091 (2013).

   View Article PDF File Under a Creative Commons License