Experimental Investigation of Trihalomethane Formation and Its Modeling in Drinking Waters

K. Özdemir1,*, Y. Yildirim1, I. Toröz2 and V. Uyak3

1Department of Environmental Engineering Bülent Ecevit University, Zonguldak, Turkey

2Department of Environmental Engineering Istanbul Technical University, Istanbul, Turkey

3Department of Environmental Engineering, College of Engineering, Pamukkale University, Denizli, Turkey

*Corresponding author: Fax: +90 372 2574023; Tel: +90 372 2574010/1135; E-mail: kadirozdemir73@yahoo.com

Abstract

This research developed models using multiple linear regression analysis for the prediction of trihalomethane formation in coagulated Istanbul drinking water sources. The power-law model (model 1), using only DUV272 as the designed parameter, proved the best model to describe the formation of trihalomethane. The other model (model 2), included pH, total organic carbon, chlorine dosages, ultraviolet absorbance at 254 nm (UV254), specific ultraviolet absorbance (SUVA) and differential absorbance at 272 nm (DUV272). The root-mean-square error (RMSE), normalization mean square error (NMSE), regression coefficient (R2) and index of agreement (IA) were used as statistical variables to evaluate the model performance. The better prediction results were obtained by model 1 for root-mean-square error, normalization mean square error, R2 and index of agreement as 9.14, 0.015, 0.95 and 0.99, respectively.

Keywords

Drinking water, Trihalomethane, Differential absorbance at 272 nm (DUV272), Modeling.

Reference (45)

1.      W.E. Elshorbagy, H. Abu-Qadais and M.K. Elsheamy, Water Res., 34, 3431 (2000); doi:10.1016/S0043-1354(00)00231-1.

2.      M.W. LeChevallier, J. Am. Water Works Assoc., 91, 86 (1999).

3.      H. Arora, M. LeChevallier and K.L. Dixon, J. Am. Water Works Assoc., 89, 60 (1997).

4.      S.W. Krasner, M.J. McGuire, J.G. Jacangelo, N.L. Patania, K.M. Reagan and E.M. Aieta, J. Am. Water Works Assoc., 81, 41 (1989).

5.      S.D. Richardson, in ed.: R.A. Meyers, Drinking Water Disinfection by-Products, In: The Encyclopedia of Environmental Analysis and Remediation, Wiley, New York, vol. 3, pp. 1398-1421 (1998).

6.      P. Roccaro and F.G.A. Vagliasindi, Water Res., 43, 744 (2009); doi:10.1016/j.watres.2008.11.007.

7.      M.J. Rodriguez and J.B. Serodes, Water Res., 35, 1572 (2001); doi:10.1016/S0043-1354(00)00403-6.

8.      J.J. Rook, Water Treat. Exam., 23, 234 (1974).

9.      Y.F. Xie, Disinfection Byproducts in Drinking Water: Formation, Analysis, and Control, CRC Press, Washington, DC, USA (2003).

10.  S. Krasner, R.S. ChinnPastor, M. Sclimenti, H. Weinberg, G. Onstad and S. Richardson, Epidemiology, 13, S108 (2002).

11.  P.C. Singer, J. Environ. Eng., 120, 727 (1994); doi:10.1061/(ASCE)0733-9372(1994)120:4(727).

12.  F. Pontius, J. Am. Water Works Assoc., 85, 22 (1993).

13.  US EPA National Primary Drinking Water Regulations: Stage 2 Disinfectants and Disinfection Byproducts (D/DBP), Final Rule, 68, 159 (2003).

14.  V. Uyak and I. Toroz, Environ. Monit. Assess., 121, 503 (2006); doi:10.1007/s10661-005-9150-0.

15.  A. Adin, J. Katzhendler, D. Alkaslassy and C. Rav-Acha, Water Res., 25, 797 (1991); doi:10.1016/0043-1354(91)90159-N.

16.  B.D. Black, G.W. Harrington and P.C. Singer, J. Am. Water Works Assoc., 88, 40 (1996).

17.  G.A. Cowman and P.C. Singer, Environ. Sci. Technol., 30, 16 (1996); doi:10.1021/es9406905.

18.  G.W. Harrington, Z.K. Chowdhury and D.M. Owen, J. Am. Water Works Assoc., 84, 78 (2000).

19.  A.C. Diehl, G.E. Speitel, J.M. Symons Jr, S.W. Krasner, C.J. Hwang and S.E. Barrett, J. Am. Water Works Assoc., 92, 76 (2000).

20.  P.C. Singer, A. Obolensky and A. Greiner, J. Am. Water Works Assoc., 87, 83 (1995).

21.  J.P. Croue´, J.F. DeBroux, G.L. Amy, G. Aiken and J. Leenheer, in ed.: P.C. Singer, Natural Organic Matter: Structural Characteristics and Reactive Properties, In: Formation and Control of Disinfection By-Products in Drinking Water, American Water Works Association, Denver, USA (1999).

22.  M. Kitis, T. Karanfil, J.E. Kilduff and A. Wigton, Water Sci. Technol., 43, 9 (2001).

23.  M. Kitis, T. Karanfil, A. Wigton and J.E. Kilduff, Water Res., 36, 3834 (2002); doi:10.1016/S0043-1354(02)00094-5.

24.  G.V. Korshin, W.W. Wu, M.M. Benjamin and O. Hemingway, Water Res. 36, 3273 (2002); doi:10.1016/S0043-1354(02)00042-8.

25.  G.V. Korshin, C.W. Li and M.M. Benjamin, Water Res., 31, 1787 (1997); doi:10.1016/S0043-1354(97)00006-7.

26.  P. Roccaro, H.S. Chang, F.G.A. Vagliasindi and G.V. Korshin, Water Res., 42, 1879 (2008); doi:10.1016/j.watres.2007.11.013.

27.  S. Platikanov, X. Puig, J. Martin and R. Tauler, Water Res., 41, 3394 (2007); doi:10.1016/j.watres.2007.04.015.

28.  P.M.S.M. Rodrigues, J.C.G. Esteves da Silva and M.C.G. Antunes, Anal. Chim. Acta, 595, 266 (2007); doi:10.1016/j.aca.2006.12.031.

29.  J. Wang, H. Du, H. Liu, X. Yao, Z. Hu and B. Fan, Talanta, 73, 147 (2007); doi:10.1016/j.talanta.2007.03.037.

30.  T.L. Lyn and J.S. Taylor, Modeling Compliance of Chlorine Residual and Disinfection by-Products, Proceeding of AWWA Water Quality Technology Conference, Miami, FL, USA (1993).

31.  R. Sadiq and M.J. Rodriguez, Sci. Total Environ., 321, 21 (2004); doi:10.1016/j.scitotenv.2003.05.001.

32.  G. Solarik, R.S. Summers, J. Sohn, W.J. Swanson, Z.K. Chowdhury and G.L. Amy, Extensions and Verification of the Water Treatment Plant Model for Disinfection by-Product Formation. In: Natural Organic Matter and Disinfection By-Products, American Chemical Society, pp. 47-66 (2000).

33.  G.L. Amy, R.A. Minear and W.J. Cooper, Water Res., 21, 649 (1987); doi:10.1016/0043-1354(87)90075-3.

34.  R.E. Rathbun, Sci. Total Environ., 191, 235 (1996); doi:10.1016/S0048-9697(96)05266-7.

35.  V. Uyak, K. Ozdemir and I. Toroz, Sci. Total Environ., 378, 269 (2007); doi:10.1016/j.scitotenv.2007.02.041.

36.  P.D. WesterhoffReckhow, G. Amy, Z. Chowdhury, J. McClellan, J. Dundorf and Q. He, Role of Five Independent Treatment Processes on NOM Structure, DBP Precursor Removal and DBP Modeling Parameters, Proceeding of AWWA Annual Conference, June 11-15, Denver, USA (2000).

37.  APHA, AWWA, WEF. Standard Methods for the Examination of Water and Wastewater. edn. 21, Washington, DC (2005).

38.  M. Kolehmainen, H. Martikainen and J. Ruuskanen, Atmos. Environ., 35, 815 (2001); doi:10.1016/S1352-2310(00)00385-X.

39.  R.S. Sokhi, R. San José, N. Kitwiroon, E. Fragkou, J.L. Pérez and D.R. Middleton, Environ. Model. Softw., 21, 566 (2006); doi:10.1016/j.envsoft.2004.07.016.

40.  J.S. Willmott, Bull. Am. Meteorol. Soc., 63, 1309 (1982); doi:10.1175/1520-0477(1982)063<1309:SCOTEO>2.0.CO;2.

41.  G. Crozes, P. White and M. Marshall, J. Am. Water Works Assoc., 87, 78 (1995).

42.  V. Uyak and I. Toroz, Environ. Technol., 26, 261 (2005); doi:10.1080/09593332608618567.

43.  S.K. Golfinopoulos and G.B. Arhonditsis, Chemosphere, 47, 1007 (2002);        doi:10.1016/S0045-6535(02)00058-9.

44.  A.D. Nikolaou and T.D. Lekkas, Acta Hydrochim. Hydrobiol., 29, 63 (2001); doi:10.1002/1521-401X(200109)29:2/3<63::AID-AHEH63>3.0.CO;2-C.

45.  H. Pourmoghaddas and A. Stevens, Water Res., 29, 2059 (1995); doi:10.1016/0043-1354(95)00026-H.

   View Article PDF File Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.