Surface Sites Distribution on Chlorogenic Acid Imprinted Polymers Based on Langmuir-Freundlich Isotherm Model by Frontal Liquid Chromatography Technique

Siping Tang1,*, Hui Li2, Zhifeng Xu1 and Cuimei Lu2

1Department of Chemistry and Material Science, Key Laboratory of Functional Organometallic Materials, Hengyang Normal University, Hengyang Hunan 421008, P.R. China

2College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, P.R. China

*Corresponding author: E-mail: tsp00@163.com

Abstract

Surface sites distribution on chlorogenic acid (CGA) imprinted polymers (MIPs) was investigated under various temperature and mobile phase composition based on the best fitting parameters of Langmuir-Freundlich (LF) model to adsorption isotherms obtained by frontal chromatography technique. Curves of sites number towards sites energy distribution under different conditions were plotted by using the best Langmuir-Freundlich fitting values and total sites number, affinity constant and heterogeneity index for this MIPs. Results indicated that for various compounds, the most suitable sites occupied were of difference in sites energy distribution and total sites number and its energy distribution varied. For the template, total sites number on the MIPs decreased when measurement was performed at higher temperature or/and using higher concentration of acetic acid in mobile phase. Additionally, structure character of analytes like molecular size, shape, functional group type and number and mass transfer dynamic were shown to influence the binding capability of compounds on imprint sites.

Keywords

Molecularly imprinted polymers, Sites energy distribution, Frontal chromatography, Chlorogenic acid.

Reference (32)

1.      F.G. Tamayo, E. Turiel and A. Martin-Esteban, J. Chromatogr. A, 1152, 32 (2007); doi:10.1016/j.chroma.2006.08.095.

2.      S.M. Ng and R. Narayanaswamy, Sens. Actuators B, 139, 156 (2009); doi:10.1016/j.snb.2008.10.035.

3.      S.M. Ng and R. Narayanaswamy, Microchim. Acta, 169, 303 (2010); doi:10.1007/s00604-010-0357-6.

4.      S.M. Ng and R. Narayanaswamy, Anal. Bioanal. Chem., 386, 1235 (2006); doi:10.1007/s00216-006-0736-3.

5.      C.J. Stephenson and K.D. Shimizu, Polym. Int., 56, 482 (2007); doi:10.1002/pi.2206.

6.      I.A. Nicholls, H.S. Andersson, C. Charlton, H. Henschel, B.C.G. Karlsson, J.G. Karlsson, J. O’Mahony, A.M. Rosengren, K.J. Rosengren and S. Wikman, Biosens. Bioelectron., 25, 543 (2009); doi:10.1016/j.bios.2009.03.038.

7.      G. Wulff, Chem. Rev., 102, 1 (2002); doi:10.1021/cr980039a.

8.      S.L. Yan, Z.X. Gao, Y.J. Fang, Y.Y. Cheng, H.Y. Zhou and H.Y. Wang, Dyes Pigments, 74, 572 (2007); doi:10.1016/j.dyepig.2006.03.021.

9.      H. Li, Y.J. Liu, Z.H. Zhang, H.P. Liao, L.H. Nie and S.Z. Yao, J. Chromatogr. A, 1098, 66 (2005); doi:10.1016/j.chroma.2005.08.046.

10.  A.G. Mayes and M.J. Whitcombe, Adv. Drug Deliv. Rev., 57, 1742 (2005); doi:10.1016/j.addr.2005.07.011.

11.  C.C. Hwang and W.C. Lee, J. Chromatogr. A, 962, 69 (2002); doi:10.1016/S0021-9673(02)00559-9.

12.  B.J. Stanley, P.S. Szabelski, Y.B. Chen, B. Sellergren and G. Guiochon, Langmuir, 19, 772 (2003); doi:10.1021/la020747y.

13.  C.Y. He, F. Liu, K.A. Li and H.W. Liu, Anal. Lett., 39, 275 (2006); doi:10.1080/00032710500476946.

14.  B.J. Gao, Y.B. Li and Z.G. Zhang, J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 878, 2077 (2010); doi:10.1016/j.jchromb.2010.06.007.

15.  W.H. Li, H.D.H. Li Stover, J. Polym. Sci. A Polym. Chem., 36, 1543 (1998); doi:10.1002/(SICI)1099-0518(19980730)36:10<1543::AID-POLA7>3.0.CO;2-R.

16.  W.-H. Li and H.D.H. Stöver, Macromolecules, 33, 4354 (2000); doi:10.1021/ma9920691.

17.  L. Ye, P.A.G. Cormack and K. Mosbach, Anal. Commun., 36, 35 (1999); doi:10.1039/a809014i.

18.  T. De Boer, R. Mol, R.A. De Zeeuw, G.J. De Jong, D.C. Sherrington, P.A.G. Cormack and K. Ensing, Electrophoresis, 23, 1296 (2002); doi:10.1002/1522-2683(200205)23:9<1296::AID-ELPS1296>3.0.CO;2-2.

19.  L. Schweitz, P. Spegel and S. Nilsson, Analyst, 125, 1899 (2000); doi:10.1039/b007221o.

20.  Y. Jiang and A.J. Tong, J. Appl. Polym. Sci., 94, 542 (2004); doi:10.1002/app.20954.

21.  J.F. Wang, P.A.G. Cormack, D.C. Sherrington and E. Khoshdel, Angew. Chem., 115, 5494 (2003); doi:10.1002/ange.200352298.

22.  B. Sellergren, Molecularly Imprinted Polymers: Man-Made Mimics of Antibodies and their Application in Analytical Chemistry, Elsevier, Amsterdam (2001).

23.  R.J. Umpleby, S.C. Baxter, Y. Chen, R.N. Shah and K.D. Shimizu, Anal. Chem., 73, 4584 (2001); doi:10.1021/ac0105686.

24.  J.A. Garcia-Calzon and M.E. Diaz-Garcia, Sens. Actuators B, 123, 1180 (2007); doi:10.1016/j.snb.2006.10.068.

25.  C. Cacho, E. Turiel, A. Martin-Esteban, C. Perez-Conde and C. Camara, Anal. Bioanal. Chem., 376, 491 (2003); doi:10.1007/s00216-003-1915-0.

26.  P. Sajonz, M. Kele, G.M. Zhong, B. Sellergren and G. Guiochon, J. Chromatogr. A, 810, 1 (1998); doi:10.1016/S0021-9673(98)00247-7.

27.  P. Szabelski, K. Kaczmarski, A. Cavazzini, Y.B. Chen, B. Sellergren and G. Guiochon, J. Chromatogr. A, 964, 99 (2002); doi:10.1016/S0021-9673(02)00587-3.

28.  P. Sajonz, G. Zhong and G. Guiochon, J. Chromatogr. A, 731, 1 (1996); doi:10.1016/0021-9673(95)00988-4.

29.  W.Y. Chen, C.S. Chen and F.Y. Lin, J. Chromatogr. A, 923, 1 (2001); doi:10.1016/S0021-9673(01)00971-2.

30.  R.J. Umpleby, S.C. Baxter, A.M. Rampey, G.T. Rushton, Y. Chen and K.D. Shimizu, J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 804, 141 (2004); doi:10.1016/j.jchromb.2004.01.064.

31.  P. Lucci, O. Núnez and M.T. Galceran, J. Chromatogr. A, 1218, 4828 (2011); doi:10.1016/j.chroma.2011.02.007.

32.  K. Balamurugan, K. Gokulakrishnan and T. Prakasam, Arabian J. Chem., doi:10.1016/j. arabjc. 2011.06.024.

   View Article PDF File Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.