Determination of 5-Fluorouracil in its Injection and Biological Fluid by Enhanced Chemiluminescence Based on Luminol-Ag(III) Complex Reaction in Alkaline Solution

Ya-Juan Dong, Ting Wang, Pei-Yun Chen and Han-Wen Sun*

College of Chemistry and Environmental Science, Hebei University, Key Laboratory of Analytical Science and Technology of Hebei Province, Baoding 071002, P.R. China

*Corresponding author: E-mail:


A novel chemiluminescence method was developed for the determination of 5-fluorouracil based on the chemiluminescence reaction between Ag(III) complex [Ag(HIO6)2]5- and luminol in alkaline solution. Chemiluminescence emission of [Ag(HIO6)2]5--luminol in alkaline medium was different from that in acidic medium. A possible mechanism of enhanced chemiluminescence emission was suggested. The enhanced effect of 5-fluorouracil on chemiluminescence emission of the [Ag(HIO6)2]5--luminol system was found. The effect of the reaction conditions on chemiluminescence emission was examined and optimized. The chemiluminescence intensity was proportional to the logarithm of 5-fluorouracil concentration with correlation coefficient (r) of 0.9954 in the range of 10-5000 ng/mL. Under the optimized conditions, the limit of detection (LOD) was 3 ng/mL. The chemiluminescence system was applied for the determination of 5-fluorouracil in its injection and biological fluid with the recoveries of 94.6-104 % and with the RSD of 1.2-2.8 %. The proposed flow-injection chemiluminescence method provides high sensitivity necessary for analysis of 5-fluorouracil in pharmaceutical and biological fluids at clinically relevant concentrations.


Enhanced chemiluminescence, Flow injection, 5-Fluorouracil, Pharmaceutical analysis.

Reference (20)

1.      S.M. Iles, S.W. Gollins, S. Susnerwala, B. Haylock, S. Myint, A. Biswas, R. Swindell and E. Levine, Br. J. Cancer, 98, 1210 (2008); doi:10.1038/sj.bjc.6604292.

2.      M. Breda and S. Barattè, Anal. Bioanal. Chem., 397, 1191 (2010); doi:10.1007/s00216-010-3633-8.

3.      United States Pharmacopoeia Convention, United States Pharmacopoeia XXIV, Merck, Easton, PA, p. 738 (1999).

4.      China Pharmacopoeia Committee, Part II, Chemical Industry Press, Beijing, pp. 472-474 (2000).

5.      S.S. Hassan, M.M. Amer, S.A.A. El-Fatah and A.M. El-kosasy, Anal. Chim. Acta, 363, 81 (1998); doi:10.1016/S0003-2670(98)00062-2.

6.      A. Prochazkova, S. Liu, H. Friess, S. Aebi and W. Thormann, J. Chromatogr. A, 916, 215 (2001); doi:10.1016/S0021-9673(00)01171-7.

7.      S.L. Liu, J.M. Wang and H.X. Ju, Chin. Pharmacol. Bull., 20, 717 (2004).

8.      C. Dodeigne, L. Thunus and R. Lejeune, Talanta, 51, 415 (2000); doi:10.1016/S0039-9140(99)00294-5.

9.      L.J. Kricka, Anal. Chim. Acta, 500, 279 (2003); doi:10.1016/S0003-2670(03)00809-2.

10.  H.W. Sun, L.Q. Li and X.Y. Chen, J. Clin. Lab. Anal., 21, 213 (2007); doi:10.1002/jcla.20143.

11.  H.W. Sun, P.Y. Chen, F. Wang and H. Wen, Talanta, 79, 134 (2009); doi:10.1016/j.talanta.2009.03.008.

12.  H.W. Sun, P.Y. Chen and F. Wang, Spectrochim. Acta A, 74, 819 (2009); doi:10.1016/j.saa.2009.08.021.

13.  P.Y. Chen and H.W. Sun, Drug Test. Anal., 2, 24 (2010); doi:10.1002/dta.104.

14.  H.M. Shi, X.D. Xu, Y.X. Ding, S.P. Liu, L.Q. Li and W.J. Kang, Anal. Biochem., 387, 178 (2009); doi:10.1016/j.ab.2009.01.014.

15.  H.W. Sun, P.Y. Chen, S.S. Shi and L.Q. Li, Luminescence, 26, 356 (2011); doi:10.1002/bio.1238.

16.  A. Balikungeri, M. Pelletier and D. Monnier, Inorg. Chim. Acta, 22, 7 (1977); doi:10.1016/S0020-1693(00)90890-9.

17.  A. Balikungeri and M. Pelletier, Inorg. Chim. Acta, 29, 141 (1978); doi:10.1016/S0020-1693(00)89639-5.

18.  A. Navas Diaz and J.A.G. Garcia, Anal. Chem., 66, 988 (1994); doi:10.1021/ac00079a010.

19.  W.Y. Lin and H.C. Yeh, Chemistry (Chin. Chem. Soc. Taipei, Taiwan), 64, 261 (2006).

20.  X.M. Huang, X.N. Lu, M. Lu, C.H. Yu and L. Huang, China Pharmacist, 5, 345 (2002).

   View Article PDF File Under a Creative Commons License