Interaction Characteristic Studies of Ciprofloxacin and/or Sulphadiazine with Bovine Serum Albumin by Spectroscopic Technique

Xu-Yang Liu, Qian Wang, Zhi-Hong Shi, Xiang-Hua Xia and Han-Wen Sun*

College of Chemical and Environmental Science, Hebei University; Key Laboratory of Analytical Science and Technology of Hebei Province, Baoding 071002, P.R. China

*Corresponding author: E-mail:


In this paper, the interaction of ciprofloxacin (CPFX) and/or sulphadiazine (SD) with bovine serum albumin (BSA) under simulative physiological conditions was studied, by fluorescence quenching in combination with UV-visible spectroscopic method. The fluorescence quenching constants, binding distance and binding constants for BSA-CPFX and/or sulphadiazine systems were determined. The fluorescence quenching of BSA by addition of ciprofloxacin and/or sulphadiazine is due to static quenching and energy transfer. The binding constants (KA) of BSA-SD and BSA-CPFX systems were 4.04 × 106 and 6.96 × 105 M-1, respectively, showing that sulphadiazine has higher binding capability with bovine serum albumin than ciprofloxacin. In the presence of sulphadiazine or ciprofloxacin, the KA values of BSA-CPFX or BSA-SD systems decreased to 4.63 × 103 or 6.56 × 104 M-1, suggesting that free ciprofloxacin and sulphadiazine in blood increased in their co-presence. Circular dichroism spectra, synchronous fluorescence and three-dimensional fluorescence studies showed that the presence of ciprofloxacin and/or sulphadiazine could change the conformation of bovine serum albumin during the binding process. The results are of great importance in pharmacy, pharmacology and biochemistry.


Fluorescence, Bovine serum albumin, Ciprofloxacin, Sulphadiazine, Interaction characteristics.

Reference (30)

1.      B. Zhou, Z.D. Qi, Q. Xiao, J.X. Dong, Y.Z. Zhang and Y. Liu, J. Biochem. Biophys. Methods, 70, 743 (2007); doi:10.1016/j.jbbm.2007.04.001.

2.      P.B. Kandagal, S.M.T. Shaikh, D.H. Manjunatha, J. Seetharamappa and B.S. Nagaralli, J. Photochem. Photobiol. Chem., 189, 121 (2007); doi:10.1016/j.jphotochem.2007.01.021.

3.      R. Koziel, J. Szczepanowska, A. Magalska, K. Piwocka, J. Duszynski and K. Zablocki, J. Physiol. Pharmacol., 61, 233 (2010).

4.      R.Q. Lian, L.H. Zhang and Z.G. Wu, Chin. J. Hosp. Pharm., 22, 108 (2002).

5.      G. Zlotos, M. Oehlmann, P. Nickel and U. Holzgrabe, J. Pharm. Biomed. Anal., 18, 847 (1998); doi:10.1016/S0731-7085(98)00220-9.

6.      H.W. Sun and P. He, Chromatographia, 68, 969 (2008); doi:10.1365/s10337-008-0814-0.

7.      L.W. Zhang, K. Wang and X.X. Zhang, Anal. Chim. Acta, 603, 101 (2007); doi:10.1016/j.aca.2007.09.021.

8.      Y.N. Ni and Q.H. Liu, J. Nanchang Univ., 35, 343 (2011).

9.      B.S. Liu, C.L. Xue, J. Wang, C. Yang and Y.K. Lv, Chin. J. Lumin., 31, 285 (2010).

10.  C.X. Fu, L.Y. Ma, Z.H. Gao and H.B. Zhang, Chin. J. Spectros. Lab., 29, 1278 (2012).

11.  B.P. Kamat, J. Pharm. Biomed. Anal., 39, 1046 (2005); doi:10.1016/j.jpba.2005.05.013.

12.  Y.-J. Hu, Y. Ou-Yang, Y. Zhang and Y. Liu, Protein J., 29, 234 (2010); doi:10.1007/s10930-010-9244-6.

13.  A. Wijkström and D. Westerlund, J. Pharm. Biomed. Anal., 1, 293 (1983); doi:10.1016/0731-7085(83)80041-7.

14.  G.C. Wood and S. Stewart, J. Pharm. Pharmacol., 23(S1), 248S (1971); doi:10.1111/j.2042-7158.1971.tb08838.x.

15.  L.N. Zhang, F.Y. Wu and A.H. Liu, Spectrochim. Acta A, 79, 97 (2011); doi:10.1016/j.saa.2011.02.013.

16.  J.R. Lakowicz and G. Weber, Biochemistry, 12, 4161 (1973); doi:10.1021/bi00745a020.

17.  M.R. Eftink and C.A. Ghiron, Anal. Biochem., 114, 199 (1981); doi:10.1016/0003-2697(81)90474-7.

18.  Y.J. Hu, Y. Liu, R.M. Zhao, J.X. Dong and S.S. Qu, J. Photochem. Photobiol. Chem., 179, 324 (2006); doi:10.1016/j.jphotochem.2005.08.037.

19.  N. Barbero, E. Barni, C. Barolo, P. Quagliotto, G. Viscardi, L. Napione, S. Pavan and F. Bussolino, Dyes Pigments, 80, 307 (2009); doi:10.1016/j.dyepig.2008.08.006.

20.  A. Mallick, B. Haldar and N. Chattopadhyay, J. Phys. Chem. B, 109, 14683 (2005); doi:10.1021/jp051367z.

21.  S.L. Bhattar, G.B. Kolekar and S.R. Patil, J. Lumin., 128, 306 (2008); doi:10.1016/j.jlumin.2007.07.014.

22.  S.M.T. Shaikh, J. Seetharamappa, P.B. Kandagal and S. Ashoka, J. Mol. Struct., 786, 46 (2006); doi:10.1016/j.molstruc.2005.10.021.

23.  U. Kragh-Hansen, Pharmacol. Rev., 33, 17 (1981).

24.  N. Dubois, F. Lapicque, J. Magdalou, M. Abiteboul and P. Netter, Biochem. Pharmacol., 48, 1693 (1994); doi:10.1016/0006-2952(94)90453-7.

25.  M. Guo, W.-J. , M.-H. Li and W. Wang, Eur. J. Med. Chem., 43, 2140 (2008); doi:10.1016/j.ejmech.2007.11.006.

26.  Q. Xiao, S. Huang, Y. Liu, F.F. Tian and J.C. Zhu, J. Fluoresc., 19, 317 (2009); doi:10.1007/s10895-008-0418-y.

27.  X.C. Zhao, R.T. Liu, Z.X. Chi, Y. Teng and P.F. Qin, J. Phys. Chem. B, 114, 5625 (2010); doi:10.1021/jp100903x.

28.  Y.Y. Pi, Y.Z. Shang, C.J. Peng, H.L. Liu, Y. Hu and J.W. Jiang, Biopolymers, 83, 243 (2006); doi:10.1002/bip.20552.

29.  L. Trynda-Lemiesz, A. Karaczyn, B.K. Keppler and H. Kozlowski, J. Inorg. Biochem., 78, 341 (2000); doi:10.1016/S0162-0134(00)00062-3.

30.  Y.J. Hu, Y. Liu, X.S. Shen, X.Y. Fang and S.S. Qu, J. Mol. Struct., 738, 143 (2005); doi:10.1016/j.molstruc.2004.11.062.

   View Article PDF File Under a Creative Commons License