Theoretical Study on the Charge Transport Property of Thia- or Selenadiazole Compound

Shan-Shan Zhao1, Dong-Hua Hu1,* and Tie-Chao Jiang2,*

1Medicinal Materials Synthesis and Design Lab, ChangChun University of Chinese Medicine, Changchun, Jilin, 130117, P.R. China

2China-Japan Union Hospital of Jilin University, Jilin University, Changchun, Jilin, 130033, P.R. China

*Corresponding authors: E-mail: zhaoss778@nenu.edu.cn

Abstract

In this work, we carried out theoretical investigation on the charge-transporting nature of 4,11-bis-[(triisopropylsilanyl)-ethynyl]-2-thia-1,3-diaza-cyclopenta[b]anthracene (1) and 4,11-bis-[(triisopropylsilanyl)-ethynyl]-2-selena-1,3-diaza-cyclopenta[b]anthracene (2) by Marcus theory and first-principle band structure. The character of the frontier molecular orbitals, reorganization energies, transfer integrals and band structures are considered in detail. The results show that the compounds 1 and 2 are ambipolar material, both electron and hole are favor of transporting. The intermolecular p-p ineraction and S···N/Se···N interaction provide the holes and electrons transport channels. The introduction of Se atom can effectively reduce the reorganization energy and considerably improve the electron transfer integrals, thus 2 is found to be a good candidate for ambipolar semiconducting material with high mobility and balanced transport.

Keywords

DFT, Marcus theory, Band structure.

Reference (11)

1.      M. Bendikov, F. Wudl and D.F. Perepichka, Chem. Rev., 104, 4891 (2004); doi:10.1021/cr030666m.

2.      J.E. Anthony, Chem. Rev., 106, 5028 (2006); doi:10.1021/cr050966z.

3.      V. Coropceanu, J. Cornil, D.A. da Silva Filho, Y. Olivier, R. Silbey and J.L. Brédas, Chem. Rev., 107, 926 (2007); doi:10.1021/cr050140x.

4.      H. Minemawari, T. Yamada, H. Matsui, J. Tsutsumi, S. Haas, R. Chiba, R. Kumai and T. Hasegawa, Nature, 475, 364 (2011); doi:10.1038/nature10313.

5.      C. Mitsui, T. Okamoto, H. Matsui, M. Yamagishi, T. Matsushita, J. Soeda, K. Miwa, H. Sato, A. Yamano, T. Uemura and J. Takeya, Chem. Mater., 25, 3952 (2013); doi:10.1021/cm303376g.

6.      M.X. Zhang and G.J. Zhao, J. Phys. Chem. C, 116, 19197 (2012); doi:10.1021/jp306311v.

7.      B.D. Lindner, B.A. Coombs, M. Schaffroth, J.U. Engelhart, O. Tverskoy, F. Rominger, M. Hamburger and U.H.F. Bunz, Org. Lett., 15, 666 (2013); doi:10.1021/ol303490b.

8.      S.S. Zhao, F. Yu, G.C. Yang, H.Y. Zhang, Z.M. Su and Y. Wang, Dalton Trans., 41, 7272 (2012); doi:10.1039/c2dt00009a.

9.      T.C. Jiang, Z.Y. Wang, B.B. Du and S.S. Zhao, Chin. Chem. Lett., 24, 945 (2013); doi:10.1016/j.cclet.2013.06.007.

10.  R.A. Marcus, Rev. Mod. Phys., 65, 599 (1993); doi:10.1103/RevModPhys.65.599.

11.  J.P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 77, 3865 (1996); doi:10.1103/PhysRevLett.77.3865.

   View Article PDF File Under a Creative Commons License