Preparation and Adsorption Properties of 2,4-Dichlorophenoxyacetic Acid Magnetic Imprinted Polymers introducing b-Cyclodextrin

Li Xu* and Mingcong Huang

College of Materials and Energy, South China Agricultural University, Guangzhou 510642, P.R. China

*Corresponding author: Tel/Fax: +86 20 85280323; E-mail: xllinda@scau.edu.cn

Abstract

Magnetic molecularly imprinted polymers (Mag-MIPs) which contained b-cyclodextrin (b-CD) derivative as the functional monomer were successfully prepared using 2,4-dichlorophenoxyacetic acid as template molecule, methacrylic acid and bismethacryloyl-b-cyclodextrin (BMA-b-CD) as binary functional monomer, ethylene glycol dimethacrylate as polymeric matrix components, Fe3O4 magnetite as magnetic component. Magnetic molecularly imprinted polymers were characterized by transmission electron microscope, Fourier transform infrared spectrometer, thermogravimetric analyzer. Competitive rebinding experiment results revealed that the magnetic molecularly imprinted polymers beads exhibited a higher specific recognition for the template than the non-imprinted polymers. Batch mode adsorption studies were carried out to investigate the specific adsorption equilibrium. Equilibrium dates in this study were analyzed with Langmuir isotherm model and Freundlich model, respectively. The analysis results show Langmuir isotherm model is fitted to the equilibrium date better than Freundlich model.

Keywords

b-Cyclodextrin, Molecularly imprinted polymers, Adsorption studies.

Reference (18)

1.      J.B. Jiang, Q. Zhou, C.C. Kang, S.Q. Wu, Y.W. Tang and X.J. Zuo, J. Appl. Polym. Sci., 129, 3425 (2013); doi:10.1002/app.39062.

2.      K.-I. Kitahara, I. Yoshihama, T. Hanada, H. Kokuba and S. Arai, J. Chromatogr. A, 1217, 7249 (2010); doi:10.1016/j.chroma.2010.09.041.

3.      X.Q. Chen, W.J. Yang, Y.M.H. Zhou and F.P. Jiao, J. Porous Mater., 19, 587 (2012); doi:10.1007/s10934-011-9509-2.

4.      A. Bereczki, A. Tolokán, G. Horvai, V. Horváth, F. Lanza, A.J. Hall and B. Sellergren, J. Chromatogr. A, 930, 31 (2001); doi:10.1016/S0021-9673(01)01190-6.

5.      J. Jodlbauer, N.M. Maier and W. Lindner, J. Chromatogr. A, 945, 45 (2002); doi:10.1016/S0021-9673(01)01504-7.

6.      M.T. Muldoon and I.H. Stanker, Anal. Chem., 69, 803 (1997); doi:10.1021/ac9604649.

7.      H.M. Zhao, Y.Q. Chen, H.B. Cheng, F. Yuan and X. Quan, Appl. Mech. Mater., 303-306, 170 (2013); doi:10.4028/www.scientific.net/AMM.303-306.170.

8.      J.P. Li, Y.P. Li, Y. Zhang and G. Wei, Anal. Chem., 84, 1888 (2012); doi:10.1021/ac2026817.

9.      A. Nezhadali, S. Pirayesh and R. Shadmehri, Sens. Actuators B, 185, 17 (2013); doi:10.1016/j.snb.2013.04.053.

10.  K.J. Tong, S. Xiao, S.J. Li and J. Wang, J. Inorg. Organomet. Polym., 18, 426 (2008); doi:10.1007/s10904-008-9217-9.

11.  Y. Kawanami, T. Yunoki, A. Nakamura, K. Fujii, K. Umano, H. Yamauchi and K. Masuda, J. Mol. Catal. Chem., 145, 107 (1999); doi:10.1016/S1381-1169(99)00049-7.

12.  Y. Yang, Y.Y. Long, Q. Cao, K. Li and F. Liu, Anal. Chim. Acta, 606, 92 (2008); doi:10.1016/j.aca.2007.10.044.

13.  Y. Zhang, Y.W. Li, Y.L. Hu, G.K. Li and Y. Chen, J. Chromatogr. A, 1217, 7337 (2010); doi:10.1016/j.chroma.2010.09.059.

14.  W. Guo, W. Hu, J. Pan, H. Zhou, W. Guan, X. Wang, J. Dai and L. Xu, Chem. Eng. J., 171, 603 (2011); doi:10.1016/j.cej.2011.04.036.

15.  X. Wang, J.M. Pan, W. Guan, X.H. Zou, P.W. Huo, Y.S. Yan and W. Hu, J. Sep. Sci., 34, 3287 (2011); doi:10.1002/jssc.201100358.

16.  Z.F. Xu, D.Z. Kuang, G. Wen, F.X. Zhang, J.Q. Wang and J.H. Li, Chemical J. Chinese Univ., 32, 1727 (2011).

17.  M.S. Zhang, J.R. Huang, P. Yu and X. Chen, Talanta, 81, 162 (2010); doi:10.1016/j.talanta.2009.11.052.

18.  I. Langmuir, J. Am. Chem. Soc., 38, 2221 (1916); doi:10.1021/ja02268a002.

   View Article PDF File Under a Creative Commons License