Biomechanical Effects of New Resin Matrix System on Dental Fiber-Reinforced Composites

Siti Sunarintyas1,*, Widowati Siswomihardjo1, Dyah Irnawati1 and Jukka Pekka Matinlinna2

1Department of Dental Biomaterials, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia

2Department of Dental Materials Science, Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Sai Ying Pun, Hong Kong

*Corresponding author: Fax: +62 274 515307; Tel: +62 274 811258522; E-mail: sunarintyassiti@ugm.ac.id; sunarintyassiti@yahoo.com

Abstract

There are concerns that dental materials based on bis-phenol-A-glycidylmethacrylate (bis-GMA) may be hazardous. Alternative monomers such as 1,6-hexanediol dimethacrylate (HDDMA) is under research. This research aimed to determine the effect of resin matrix compositions on the biomechanical properties of E-glass fiber-reinforced composite (FRC) using bis-phenol-A-glycidylmethacrylate (bis-GMA), methylmethacrylate (MMA), 1,6-hexanediol dimethacrylate (HDDMA), camphorquinone (CQ) and N,N-cyanoethyl methylaniline (CEMA). The ratios of the resin matrices (weight %) were 78.4 % bis-GMA + 19.6 % MMA + 1 % CQ + 1 % CEMA (control-group), 78.4 % HDDMA + 19.6 % MMA + 1 % CQ + 1 % CEMA (EXP1-group) and 49 % HDDMA + 49 % MMA + 1 % CQ + 1 % CEMA (EXP2-group). E-glass fibers were embedded in matrix and light-cured for 3 × 40 s. Three-point bending (2 × 2 × 25) mm and Vicker’s hardness (2 × 2 × 5) mm were examined (n = 6) by a universal testing machine (Torsee’s UTM, Japan) and a micro-hardness tester (MTX70 Matsuzawa, Japan). The data were analyzed by ANOVA. Bending measurement revealed the mean value of control-group (674.1 ± 9.9) MPa was higher than EXP1-group (638.1 ± 8.6) MPa and EXP2-group (448.3 ± 7.8) MPa. The ANOVA showed significant difference in bending values among the groups (p < 0.05). Hardness measurement proved EXP1-group mean value (179.1 ± 2.5) VHN was higher than control-group (181.5 ± 11.5) VHN and EXP2-group (168.2 ± 7.9) VHN. The ANOVA proved there was significant difference (p < 0.05) in hardness values. In conclusion, a resin matrix system based on HDDMA-MMA (EXP1-group) showed comparable flexural strength and hardness properties to bis-GMA-MMA (control-group) system.

Keywords

Biomechanics, Fiber-reinforced composites, 1,6-Hexanediol dimethacrylate.

Reference (27)

1.       J.A. Hobkirk, R.M. Watson and L.J.J. Searson, Introducing Dental Implants, Churchill Livingstone, London, pp. 22-25 (2003).

2.       M.A. Freilich, J.C. Meiers, J.P. Duncan and A.J. Goldberg, Fiber-Reinforced Composites in Clinical Dentistry, Quintessence Publishing Co. Inc., Illinois, pp. 1-3 (2000).

3.       S. Garoushi, L. Lassila and P.K. Vallittu, Int. J. Dent., 8, 455 (2011).

4.       P.K. Mallick, Fiber-Reinforced Composites: Materials, Manufacturing and Design, CRC Press, Boca Raton, edn 3, pp. 42-58 (2008).

5.       http://www.doria.fi/bitstream/ handle/10024/33576/D780.pdf?sequence=1,pg.

6.       M. Zhang and J.P. Matinlinna, J. Adhes. Sci. Technol., 25, 2687 (2011); doi:10.1163/016942411X556051.

7.       M. Zhang and J.K. Matinlinna, Silicon, 4, 73 (2012); doi:10.1007/s12633-011-9075-x.

8.       K.J. Anusavice, Phillip’s Science of Dental Materials, Elsevier Science, St Louis, edn 11, p. 77 (2009).

9.       K.-J. Söderholm and A. Mariotti, J. Am. Dent.Assoc., 130, 201 (1999); doi:10.14219/jada.archive.1999.0169.

10.   I. Stoeva, A. Kisselova and M. Zekova, Journal of IMAB, Annual Proceeding, Book 2, pp. 45-46 (2008).

11.   J.M. Powers and R.L. Sakaguchi, Restorative Dental Materials, Evolve, Missouri, edn 12, p. 229 (2003).

12.   Esstech, Material Safety Data Sheet, Product: 1,6-Hexanediol Dimethacrylate, Code: x887-7446, Esstech, USA, pp.1-8 (2003).

13.   P.K. Vallittu, J. Prosthet. Dent., 79, 125 (1998); doi:10.1016/S0022-3913(98)70204-5.

14.   P.K. Vallittu, J. Prosthet. Dent., 81, 318 (1999); doi:10.1016/S0022-3913(99)70276-3.

15.   P.K. Vallittu, Strength and Interfacial Adhesion of FRC-Tooth System, The Second International Symposium on Fibre-Reinforced Plastics in Dentistry. University of Turku, Finland, Institute of Dentistry and Biomaterials Research (2002).

16.   P.K. Vallittu and C. Sevelius, J. Prosthet. Dent., 84, 413 (2000); doi:10.1067/mpr.2000.109782.

17.   P.K. Vallittu and M. Kononen, in eds: S. Karlisson, K. Nilner and B.L. Dahl, Biomechanical Aspects and Material Properties, In: A Textbook of Fixed Prosthodontics: A Scandinavian Approach, Stockholm, Sweden, Gothia, pp. 116-30 (2000).

18.   S.R. Dyer, in ed.: P.K. Vallittu, Current Design Factors in Fiber Reinforced Composite Fixed Partial Dentures, The Second International Symposium on Fibre-Reinforced Plastics in Dentistry, University of Turku, Finland, Institute of Dentistry and Biomaterials Research (2002).

19.   I. Narisawa and H. Oba, J. Mater. Sci., 19, 1777 (1984); doi:10.1007/BF00550247.

20.   M.A. Hamstad, Acoust. Emission US Army Mantech. J., 10, 24 (1985).

21.   J.F. McCabe and A.W.G. Walls, Applied Dental Materials, Blackwell Munsgaard, Oxford, edn 9, pp. 213-215 (2008).

22.   J.P. Matinlinna, J.E. Dahl, S. Karlsson, L.V. Lassila and P.K. Valittu, in ed.: K.L. Mittal, Silanes and Other Coupling Agents, VSP/Brill, Leiden, The Netherlands, vol. 5, pp. 107-121 (2009).

23.   R. Brown, Handbook of Polymer Testing: Short-Term Mechanical Tests, Smithers, Shawbury, UK, pp. 144 (2002).

24.   C.A.M. Soares, C.M.M. Soares and M.J.M. Freitas, Mechanics of Composite Materials and Structures. Springer, New York (1999).

25.   P.K. Vallitu, In J.P. Matinlinna and K.L. Mittal, Adhesion Aspects in Dentistry, pp. 63-74 (2009).

26.   B.W. Darvell, A Glossary of Terms for Dental Materials Science, Darvell, Pokfulam, edn 9 (2006).

27.   R.G. Craig, J.M. Powers and J.C. Wataha, Dental Materials: Properties and Manipulation, Mosby Elsevier, St Louis, edn 8, pp. 19-29 (2004).

 

   View Article PDF File Under a Creative Commons License