Fungal Glycoside Hydrolases of White-Rot Fungi for Cellulosic Biofuels Production: A Review

Sunardi1,2,*,, Wiwin Tyas Istikowati3, Futoshi Ishiguri4 and Shinso Yokota4

1Department of Chemistry, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat University, Banjarbaru 70714, Indonesia

2Wetland-Based Materials Research Center, Lambung Mangkurat University, Banjarbaru 70714, Indonesia

3Faculty of Forestry, Lambung Mangkurat University, Banjarbaru 70714 Indonesia

4Faculty of Agriculture, Utsunomiya University, Utsunomiya, Tochigi 321-8505, Japan

*Corresponding author: E-mail: sunardi@ulm.ac.id; masunardi@gmail.com

Abstract

The second generation bioethanol production from lignocellulose materials through environmental friendly methods is one of the biggest challenges on industrial application. Enzymatic hydrolysis of cellulose has more benefits compared with the acid hydrolysis. This method has the good specificity, low consumption of energy and chemicals and is more environmental friendly. However, the utilization of lignocellulose for bioethanol production through enzymatic methods is still confronting several difficulties for commercialization. Cellulose hydrolysis step has been reported to be the bottleneck of bioethanol production by enzymatic process, and the major barrier of this process is high price of enzymes, which making the process less economically feasible. For this reason, many developments are still needed in cellulase production from various organisms for cellulose saccharification. White-rot fungi have received much consideration for their valuable enzyme systems which can effective degrade lignocellulose biomass. These fungi could secrete extracellular oxidative and hydrolytic enzymes that degrade lignin, hemicellulose, and cellulose. This review provides a complete overview of the glycoside hydrolases enzymes production by white-rot fungus, such as endoglucanase, exoglucanase, β-glucosidase, cellobiose dehydrogenase and lytic polysaccharide monooxygenase. The use of white-rot fungus for low cost glycoside hydrolases enzymes production might be fascinating for second generation bioethanol production.

Keywords

White-rot fungi, Biofuels, Glycoside hydrolases, Enzymatic hydrolysis, Enzymes.

Reference (119)

1.M.E. Himmel, S.Y. Ding, D.K. Johnson, W.S. Adney, M.R. Nimlos, J.W. Brady and T.D. Foust, Science, 315, 804 (2007);

https://doi.org/10.1126/science.1137016

2.M.D. Sweeney and F. Xu, Catalysts, 2, 244 (2012);

https://doi.org/10.3390/catal2020244

3.X.F. Tian, Z. Fang and F. Guo, Biofuels Bioprod. Biorefin., 6, 335 (2012);

https://doi.org/10.1002/bbb.346

4.M. Galbe and G. Zacchi, ed.: L. Olsson, Pretreatment of Lignocellulosic Materials for Efficient Bioethanol Production, In: Biofuels, Springer-Verlag, New York, pp. 41-65 (2007).

5.M. Taha, M. Foda, E. Shahsavari, A. Aburto-Medina, E. Adetutu and A. Ball, Curr. Opin. Biotechnol., 38, 190 (2016);

https://doi.org/10.1016/j.copbio.2016.02.012

6.S.B.A. Hamid, M.M. Islam and R. Das, Cellulose, 22, 2157 (2015);

https://doi.org/10.1007/s10570-015-0672-5

7.J. Zhuang, M.A. Marchant, S.E. Nokes and H.J. Strobel, Appl. Eng. Agric., 23, 679 (2007);

https://doi.org/10.13031/2013.23659

8.C.M. Phillips, I.V.W.T. Beeson IV, J.H. Cate and M.A. Marletta, ACS Chem. Biol., 6, 1399 (2011);

https://doi.org/10.1021/cb200351y

9.L. Viikari, J. Vehmaanperä and A. Koivula, Biomass Bioenergy, 46, 13 (2012);

https://doi.org/10.1016/j.biombioe.2012.05.008

10.V. Elisashvili, E. Kachlishvili, N. Tsiklauri, E. Metreveli, T. Khardziani and S.N. Agathos, World J. Microb. Biot., 25, 331 (2009);

https://doi.org/10.1007/s11274-008-9897-x

11.T. Manavalan, A. Manavalan and K. Heese, Curr. Microbiol., 70, 485 (2015);

https://doi.org/10.1007/s00284-014-0743-0

12.A. Manavalan, S.S. Adav and S.K. Sze, J. Proteomics, 75, 642 (2011);

https://doi.org/10.1016/j.jprot.2011.09.001

13.S. Haghighi Mood, A. Hossein Golfeshan, M. Tabatabaei, G.S. Jouzani, G.H. Najafi, M. Gholami and M. Ardjmand, Renew. Sustain. Energy Rev., 27, 77 (2013);

https://doi.org/10.1016/j.rser.2013.06.033

14.A. Sørensen, M. Lübeck, P.S. Lübeck and B.K. Ahring, Biomolecules, 3, 612 (2013);

https://doi.org/10.3390/biom3030612

15.V. Menon and M. Rao, Pror. Energy Combust. Sci., 38, 522 (2012);

https://doi.org/10.1016/j.pecs.2012.02.002

16.A. Eisentraut, International Energy Agency, Paris, pp. 217 (2010).

17.P. Lozano, B. Bernal, A.G. Jara and M.P. Belleville, Bioresour. Technol., 151, 159 (2014);

https://doi.org/10.1016/j.biortech.2013.10.067

18.L. Rosgaard, S. Pedersen, J. Langston, D. Akerhielm, J.R. Cherry and A.S. Meyer, Biotechnol. Prog., 23, 1270 (2007);

https://doi.org/10.1021/bp070329p

19.C. Lehmann, F. Sibilla, Z. Maugeri, W.R. Streit, P. Domínguez de María, R. Martinez and U. Schwaneberg, Green Chem., 14, 2719 (2012);

https://doi.org/10.1039/c2gc35790a

20.J. Pérez, J. Muñoz-Dorado, T. de la Rubia and J. Martínez, Int. Microbiol., 5, 53 (2002);

https://doi.org/10.1007/s10123-002-0062-3

21.S. Prasad, A. Singh and H.C. Joshi, Resour. Conserv. Recycl., 50, 1 (2007);

https://doi.org/10.1016/j.resconrec.2006.05.007

22.A.C. O’Sullivan, Cellulose, 4, 173 (1997);

https://doi.org/10.1023/A:1018431705579

23.D.N.S. Hon, Cellulose, 1, 1 (1994);

https://doi.org/10.1007/BF00818796

24.R.F.H. Dekker, ed.: T. Higuchi, Biodegradation of Hemicelluloses, In:  Biosynthesis and Biodegradation of Wood Components, Academic Press, New York, pp. 505-533 (1985).

25.T. Watanabe, J. Ohnishi, Y. Yamasaki, S. Kaizu and T. Koshijima, Agric. Biol. Chem., 53, 2233 (1989).

26.E. Sjöström, Wood Chemistry: Fundamentals and Applications, Academic Press: New York, edn 2, pp. 293 (1993).

27.A. Hatakka and K.E. Hammel, ed.: M. Hofrichter, Fungal Biodegra-dation of Lignocelluloses, In: The Mycota X. Industrial Applications, Springer-Verlag: Heidelberg, edn 2, pp. 319-340 (2010).

28.C. Alvarez, F.M. Reyes-Sosa and B. Díez, Microb. Biotechnol., 9, 149 (2016);

https://doi.org/10.1111/1751-7915.12346

29.L. Otjen and R.A. Blanchette, Can. J. Bot., 64, 905 (1986);

https://doi.org/10.1139/b86-121

30.A. Abbas, H. Koc, F. Liu and M. Tien, Curr. Genet., 47, 49 (2005);

https://doi.org/10.1007/s00294-004-0550-4

31.S. Watkinson, D. Bebber, P. Darrah, M. Fricker, M. Tlalka and L. Boddy, ed.: G.M. Gadd, The Role of Wood Decay Fungi in the Carbon and Nitrogen Dynamics of the Forest Floor, In: Fungi in Biogeochemical Cycles, Cambridge University Press, Cambridge, pp. 151-181 (2006).

32.S. Malherbe and T.E. Cloete, Rev. Environ. Sci. Bio., 1, 105 (2002);

https://doi.org/10.1023/A:1020858910646

33.M. Dashtban, H. Schraft and W. Qin, Int. J. Biol. Sci., 5, 578 (2009);

https://doi.org/10.7150/ijbs.5.578

34.I. Kamei, Y. Hirota and S. Meguro, Bioresour. Technol., 126, 137 (2012);

https://doi.org/10.1016/j.biortech.2012.09.007

35.R.A. Blanchette, Can. J. Bot., 73(S1), 999 (1995);

https://doi.org/10.1139/b95-350

36.K.E. Eriksson and B. Pettersson, Eur. J. Biochem., 51, 213 (1975);

https://doi.org/10.1111/j.1432-1033.1975.tb03921.x

37.L. Otjen, R. Blanchette, M. Effland and G. Leatham, Holzforschung, 41, 343 (1987);

https://doi.org/10.1515/hfsg.1987.41.6.343

38.A. Machuca and A. Ferraz, Enzyme Microb. Technol., 29, 386 (2001);

https://doi.org/10.1016/S0141-0229(01)00417-3

39.H. Tanaka, K. Koike, S. Itakura and A. Enoki, Enzyme Microb. Technol., 45, 384 (2009);

https://doi.org/10.1016/j.enzmictec.2009.06.003

40.T.K. Kirk, Holzforschung, 29, 99 (1975);

https://doi.org/10.1515/hfsg.1975.29.3.99

41.A.T. Martínez, M. Speranza, F.J. Ruiz-Dueñas, P. Ferreira, S. Camarero, F. Guillén, M.J. Martínez, A. Gutiérrez and J.C. del Río, Int. Microbiol., 8, 195 (2005).

42.C. Sánchez, Biotechnol. Adv., 27, 185 (2009);

https://doi.org/10.1016/j.biotechadv.2008.11.001

43.L. Zifèáková and P. Baldrian, Fungal Ecol., 5, 481 (2012);

https://doi.org/10.1016/j.funeco.2012.05.001

44.J. Rytioja, K. Hildén, A. Hatakka and M.R. Mäkelä, Fungal Genet. Biol., 72, 91 (2014);

https://doi.org/10.1016/j.fgb.2013.12.008

45.D. Floudas, B.W. Held, R. Riley, L.G. Nagy, G. Koehler, A.S. Ransdell, H. Younus, J. Chow, J. Chiniquy, A. Lipzen, A. Tritt, H. Sun, S. Haridas, K. LaButti, R.A. Ohm, U. Kües, R.A. Blanchette, I.V. Grigoriev, R.E. Minto and D.S. Hibbett, Fungal Genet. Biol., 76, 78 (2015);

https://doi.org/10.1016/j.fgb.2015.02.002

46.A.L. Demain, M. Newcomb and J.H.D. Wu, Microbiol. Mol. Biol. Rev., 69, 124 (2005);

https://doi.org/10.1128/MMBR.69.1.124-154.2005

47.S. Dutta and K.C.W. Wu, Green Chem., 16, 4615 (2014);

https://doi.org/10.1039/C4GC01405G

48.B. Henrissat, I. Callebaut, S. Fabrega, P. Lehn, J.P. Mornon and G. Davies, Proc. Natl. Acad. Sci. USA, 92, 7090 (1995);

https://doi.org/10.1073/pnas.92.15.7090

49.B. Henrissat, Biochem. J., 280, 309 (1991);

https://doi.org/10.1042/bj2800309

50.V. Lombard, H. Golaconda Ramulu, E. Drula, P.M. Coutinho and B. Henrissat, Nucleic Acids Res., 42(D1), D490 (2014);

https://doi.org/10.1093/nar/gkt1178

51.B. Henrissat and G. Davies, Curr. Opin. Struct. Biol., 7, 637 (1997);

https://doi.org/10.1016/S0959-440X(97)80072-3

52.L.R. Lynd, P.J. Weimer, W.H. van Zyl and I.S. Pretorius, Microbiol. Mol. Biol. Rev., 66, 506 (2002);

https://doi.org/10.1128/MMBR.66.3.506-577.2002

53.M. Sandgren, J. Ståhlberg and C. Mitchinson, Prog. Biophys. Mol. Biol., 89, 246 (2005);

https://doi.org/10.1016/j.pbiomolbio.2004.11.002

54.C. Wan and Y. Li, Biotechnol. Adv., 30, 1447 (2012);

https://doi.org/10.1016/j.biotechadv.2012.03.003

55.L. Levin, L. Villalba, V. Da Re, F. Forchiassin and L. Papinutti, Process Biochem., 42, 995 (2007);

https://doi.org/10.1016/j.procbio.2007.03.008

56.P. Tomme, R.A.J. Warren and N.R. Gilkes, Adv. Microb. Physiol., 37, 1 (1995);

https://doi.org/10.1016/S0065-2911(08)60143-5

57.C.M. Payne, B.C. Knott, H.B. Mayes, H. Hansson, M.E. Himmel, M. Sandgren, J. Ståhlberg and G.T. Beckham, Chem. Rev., 115, 1308 (2015);

https://doi.org/10.1021/cr500351c

58.D.R. Schmidhalter and G. Canevascini, Arch. Biochem. Biophys., 300, 551 (1993);

https://doi.org/10.1006/abbi.1993.1076

59.P. Baldrian and V. Valášková, FEMS Microbiol. Rev., 32, 501 (2008);

https://doi.org/10.1111/j.1574-6976.2008.00106.x

60.I. Herpoël-Gimbert, A. Margeot, A. Dolla, G. Jan, D. Mollé, S. Lignon, H. Mathis, J.C. Sigoillot, F. Monot and M. Asther, Biotechnol. Biofuels, 1, 18 (2008);

https://doi.org/10.1186/1754-6834-1-18

61.B. Sipos, Z. Benkõ, D. Dienes, K. Réczey, L. Viikari and M. Siika-aho, Appl. Biochem. Biotechnol., 161, 347 (2010);

https://doi.org/10.1007/s12010-009-8824-4

62.S.P.S. Chundawat, M.S. Lipton, S.O. Purvine, N. Uppugundla, D. Gao, V. Balan and B.E. Dale, J. Proteome Res., 10, 4365 (2011);

https://doi.org/10.1021/pr101234z

63.K.M. Bhat and R. Maheshwari, Appl. Environ. Microbiol., 53, 2175 (1987);

https://doi.org/10.1128/AEM.53.9.2175-2182.1987

64.A.M.V. Garzillo, S.D. Paolo, M. Ruzzi and V. Buonocore, Appl. Microbiol. Biotechnol., 42, 476 (1994);

https://doi.org/10.1007/s002530050281

65.M. Jeya, Y.W. Zhang, I.W. Kim and J.K. Lee, Bioresour. Technol., 100, 5155 (2009);

https://doi.org/10.1016/j.biortech.2009.05.040

66.A.A. Dias, G.S. Freitas, G.S.M. Marques, A. Sampaio, I.S. Fraga, M.A.M. Rodrigues, D.V. Evtuguin and R.M.F. Bezerra, Bioresour. Technol., 101, 6045 (2010);

https://doi.org/10.1016/j.biortech.2010.02.110

67.F. Ma, J. Wang, Y. Zeng, H. Yu, Y. Yang and X. Zhang, Process Biochem., 46, 1767 (2011);

https://doi.org/10.1016/j.procbio.2011.05.020

68.X.Q. Dong, J.S. Yang, N. Zhu, E.T. Wang and H.L. Yuan, Bioresour. Technol., 131, 443 (2013);

https://doi.org/10.1016/j.biortech.2012.12.182

69.S.S. Jagtap, S.S. Dhiman, T.S. Kim, J. Li, J.K. Lee and Y.C. Kang, Bioresour. Technol., 133, 307 (2013);

https://doi.org/10.1016/j.biortech.2013.01.118

70.Sunardi, J. Tanabe, F. Ishiguri, J. Ohshima, K. Iizuka and S. Yokota, Int. Biodeter. Biodegr., 110, 108 (2016);

https://doi.org/10.1016/j.ibiod.2016.02.022

71.Sunardi, A. Nakamura, F. Ishiguri and S. Yokota, Asian J. Chem., 30, 317 (2018);

https://doi.org/10.14233/ajchem.2018.20941

72.D.B. Wilson, Ann. N. Y. Acad. Sci., 1125, 289 (2008);

https://doi.org/10.1196/annals.1419.026

73.Y. Li, D.C. Irwin and D.B. Wilson, Appl. Environ. Microbiol., 76, 2582 (2010);

https://doi.org/10.1128/AEM.02735-09

74.S.J. Horn, G. Vaaje-Kolstad, B. Westereng and V.G.H. Eijsink, Biotechnol. Biofuels, 5, 45 (2012);

https://doi.org/10.1186/1754-6834-5-45

75.J. Fang, Y. Qu and P. Gao, Biotechnol. Tech., 11, 195 (1997);

https://doi.org/10.1023/A:1018413816347

76.E. Kachlishvili, M.J. Penninckx, N. Tsiklauri and V. Elisashvili, World J. Microbiol. Biotechnol., 22, 391 (2006);

https://doi.org/10.1007/s11274-005-9046-8

77.M. Jeya, N.P.T. Nguyen, H.J. Moon, S.H. Kim and J.K. Lee, Bioresour. Technol., 101, 8742 (2010);

https://doi.org/10.1016/j.biortech.2010.06.055

78.J. Eyzaguirre, M. Hidalgo and A. Leschot, Handbook of Carbohydrate Engineering. Taylor & Francis, New York, pp. 645-758 (2005).

79.B.E. Lechner and V.L. Papinutti, Process Biochem., 41, 594 (2006);

https://doi.org/10.1016/j.procbio.2005.08.004

80.G. Henriksson, P. Ander, B. Pettersson and G. Pettersson, Appl. Microbiol. Biotechnol., 42, 790 (1995);

https://doi.org/10.1007/BF00171963

81.G. Henriksson, V. Sild, I.J. Szabó, G. Pettersson and G. Johansson, Biochim. Biophys. Acta, 1383, 48 (1998);

https://doi.org/10.1016/S0167-4838(97)00180-5

82.G. Henriksson, G. Johansson and G. Pettersson, J. Biotechnol., 78, 93 (2000);

https://doi.org/10.1016/S0168-1656(00)00206-6

83.M. Zamocky, R. Ludwig, C. Peterbauer, B.M. Hallberg, C. Divne, P. Nicholls and D. Haltrich, Curr. Protein Pept. Sci., 7, 255 (2006);

https://doi.org/10.2174/138920306777452367

84.A. Hüttermann and A. Noelle, Holzforschung, 36, 283 (1982);

https://doi.org/10.1515/hfsg.1982.36.6.283

85.B.P. Roy, T. Dumonceaux, A.A. Koukoulas and F.S. Archibald, Appl. Environ. Microbiol., 62, 4417 (1996);

https://doi.org/10.1128/AEM.62.12.4417-4427.1996

86.U. Temp and C. Eggert, Appl. Environ. Microbiol., 65, 389 (1999);

https://doi.org/10.1128/AEM.65.2.389-395.1999

87.M. Yoshida, T. Ohira, K. Igarashi, H. Nagasawa and M. Samejima, FEMS Microbiol. Lett., 217, 225 (2002);

https://doi.org/10.1111/j.1574-6968.2002.tb11479.x

88.R. Ludwig, A. Salamon, J. Varga, M. Zámocky, C.K. Peterbauer, K.D. Kulbe and D. Haltrich, Appl. Microbiol. Biotechnol., 64, 213 (2004);

https://doi.org/10.1007/s00253-003-1501-6

89.S. Nakagame, A. Furujyo and J. Sugiura, Biosci. Biotechnol. Biochem., 70, 1629 (2006);

https://doi.org/10.1271/bbb.50692

90.M. Bey, J.G. Berrin, L. Poidevin and J.C. Sigoillot, Microb. Cell Fact., 10, 113 (2011);

https://doi.org/10.1186/1475-2859-10-113

91.J. Sulej, G. Janusz, A. Mazur, K. Zuber, A. Zebracka and J. Rogalski, Process Biochem., 48, 1715 (2013);

https://doi.org/10.1016/j.procbio.2013.08.003

92.G. Vaaje-Kolstad, B. Westereng, S.J. Horn, Z. Liu, H. Zhai, M. Sørlie and V.G.H. Eijsink, Science, 330, 219 (2010);

https://doi.org/10.1126/science.1192231

93.J.A. Langston, T. Shaghasi, E. Abbate, F. Xu, E. Vlasenko and M.D. Sweeney, Appl. Environ. Microbiol., 77, 7007 (2011);

https://doi.org/10.1128/AEM.05815-11

94.C. Sygmund, D. Kracher, S. Scheiblbrandner, K. Zahma, A.K.G. Felice, W. Harreither, R. Kittl and R. Ludwig, Appl. Environ. Microbiol., 78, 6161 (2012);

https://doi.org/10.1128/AEM.01503-12

95.R.J. Quinlan, M.D. Sweeney, L. Lo Leggio, H. Otten, J.-C.N. Poulsen, K.S. Johansen, K.B.R.M. Krogh, C.I. Jorgensen, M. Tovborg, A. Anthonsen, T. Tryfona, C.P. Walter, P. Dupree, F. Xu, G.J. Davies and P.H. Walton, Proc. Natl. Acad. Sci. USA, 108, 15079 (2011);

https://doi.org/10.1073/pnas.1105776108

96.E.M. Turner, M. Wright, T. Ward, D.J. Osborne and R. Self, J. Gen. Microbiol., 91, 167 (1975);

https://doi.org/10.1099/00221287-91-1-167

97.J.Y. Lu and A.Y. Tang, J. Food Sci., 51, 668 (1986);

https://doi.org/10.1111/j.1365-2621.1986.tb13907.x

98.F.O. Heidorne, P.O. Magalhães, A.L. Ferraz and A.M.F. Milagres, Enzyme Microb. Technol., 38, 436 (2006);

https://doi.org/10.1016/j.enzmictec.2005.06.015

99.P.O. Magalhães, A. Ferraz and A.F.M. Milagres, J. Appl. Microbiol., 101, 480 (2006);

https://doi.org/10.1111/j.1365-2672.2006.02946.x

100.M. Streamer, K.E. Eriksson and B. Pettersson, Eur. J. Biochem., 59, 607 (1975);

https://doi.org/10.1111/j.1432-1033.1975.tb02489.x

101.V. Deshpande, K.E. Eriksson and B. Pettersson, Eur. J. Biochem., 90, 191 (1978);

https://doi.org/10.1111/j.1432-1033.1978.tb12590.x

102.X. Rouau and E. Odier, Enzyme Microb. Technol., 8, 22 (1986);

https://doi.org/10.1016/0141-0229(86)90005-0

103.J. Mallerman, L. Papinutti and L. Levin, J. Microbiol. Biotechnol., 25, 57 (2015);

https://doi.org/10.4014/jmb.1401.01045

104.T. Vìtrovský, P. Baldrian and J. Gabriel, Appl. Biochem. Biotechnol., 169, 100 (2013);

https://doi.org/10.1007/s12010-012-9952-9

105.S. Sik and A. Ünyayar, Turk. J. Biol., 22, 287 (1998).

106.D.N.X. Salmon, M.R. Spier, C.R. Soccol, L.P. Vandenberghe, V. Weingartner Montibeller, M.C.J. Bier and V. Faraco, Fungal Biol., 118, 655 (2014);

https://doi.org/10.1016/j.funbio.2014.04.003

107.R. Sasidhara and T. Thirunalasundari, Eur. J. Exp. Biol., 4, 375 (2014).

108.B. Hegarty, A. Steinfurth, W. Liese and O. Schmidt, Holzforschung, 41, 265 (1987);

https://doi.org/10.1515/hfsg.1987.41.5.265

109.T. Kanda, K. Wakabayashi and K. Nisizawa, J. Biochem., 79, 977 (1976);

https://doi.org/10.1093/oxfordjournals.jbchem.a131165

110.E.S. Lymar, B. Li and V. Renganathan, Appl. Environ. Microbiol., 61, 2976 (1995);

https://doi.org/10.1128/AEM.61.8.2976-2980.1995

111.K. Igarashi, M. Samejima and K.E.L. Eriksson, Eur. J. Biochem., 253, 101 (1998);

https://doi.org/10.1046/j.1432-1327.1998.2530101.x

112.C. Sigoillot, A. Lomascolo, E. Record, J.L. Robert, M. Asther and J.C. Sigoillot, Enzyme Microb. Technol., 31, 876 (2002);

https://doi.org/10.1016/S0141-0229(02)00208-9

113.H. Morais, C. Ramos, N. Matos, E. Forgács, T. Cserháti, V. Almeida, J. Oliveira, Y. Darwish and Z. Illés, J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 770, 111 (2002);

https://doi.org/10.1016/S0378-4347(01)00561-8

114.A.C. Lo, J.R. Barbier and G.E. Willick, Eur. J. Biochem., 192, 175 (1990);

https://doi.org/10.1111/j.1432-1033.1990.tb19211.x

115.R. Maheshwari, G. Bharadwaj and M.K. Bhat, Microbiol. Mol. Biol. Rev., 64, 461 (2000);

https://doi.org/10.1128/MMBR.64.3.461-488.2000

116.I. Irbe, V. Elisashvili, M.D. Asatiani, A. Janberga, I. Andersone, B. Andersons, V. Biziks and J. Grinins, Inter. Biodeter. Biodegrad., 86, 71 (2014);

https://doi.org/10.1016/j.ibiod.2013.06.027

117.X. Li, J. Pei, G. Wu and W. Shao, Biotechnol. Lett., 27, 1369 (2005);

https://doi.org/10.1007/s10529-005-3683-8

118.Y.J. Cai, S.J. Chapman, J.A. Buswell and S.T. Chang, Appl. Environ. Microbiol., 65, 553 (1999);

https://doi.org/10.1128/AEM.65.2.553-559.1999

119.C. Liers, R. Ullrich, K.T. Steffen, A. Hatakka and M. Hofrichter, Appl. Microbiol. Biotechnol., 69, 573 (2006);

https://doi.org/10.1007/s00253-005-0010-1

   View Article PDF File Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.